Mobile QR Code QR CODE


Talebi H., Zhu X., Milanfar P., 2013, How to SAIF-ly boost denoising performance, IEEE Trans. Image Process., Vol. 22, No. 4, pp. 1470-1485DOI
Varghese G., Wang Z., 2010, Video denoising based on a spatiotemporal Gaussian scale mixture model, IEEE Trans. Circuits Syst. Video Technol., Vol. 20, No. 7, pp. 1032-1040DOI
Ozkan M. K., Erdem A. T., Sezan M. I., Tekalp A. M., 1992, Efficient multiframe Wiener restoration of blurred and noisy image sequences, IEEE Trans. Image Process., Vol. 1, pp. 453-476DOI
Rosenfeld A., Kak A. C., 1982, Digital picture processing, Second edition, Academic, New York, USADOI
Hwang J. J., Rhee K. H., Research, Gaussian filtering detection based on features of residuals in image forensics, in Proc. of IEEE Int. Conf. Computing & Communication Technologies, Research, Innovation, and Vision for the Future, Hanoi, Vietnam, pp. 153-157DOI
Patterson H. C., Andrews C. L., Speech, Singular value decompositions and digital image processing, IEEE Trans. Acoust., Speech, Signal Process., Vol. 24, pp. 26-53DOI
Lee H-C., Lee H-J., Kwon H., Liang J., 1991, Digital image noise suppression method using SVD block transform, U.S. Patent 5 010 504Google Search
Chang S. G., Yu B., Vetterli M., 2000, Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Process., Vol. 9, No. 9, pp. 1532-1546DOI
Brunet D., Vrscay E. R., Wang Z., July 2009, The use of residuals in image denoising, in Proc. of 6th Int. Conf. Image Analysis and Recognition, Halifax, Canada, pp. 1-12DOI
Riot P., Almansa A., Gousseau Y., Tupin F., Sept. 2016, Penalizing local correlations in the residual improves image denoising performance, in Proc. of 24th European Conf. Signal Processing, Budapest, Hungary, pp. 1867-1871DOI
Koziarski M., Cyganek B. L., 2016, Deep neural image denoising, in Proc. of Int. Conf. Computer Vision and Graphics, pp. 163-173DOI
Wang P., Zhang H., Patel V. M., 2017, SAR image despeckling using a convolutional neural network, IEEE Signal Process., Letters, Vol. 24, No. 2, pp. 1763-1767DOI
Zhang K., Zuo W., Chen Y., Meng D., Zhang L., 2017, Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising, IEEE Trans. Image Process., Vol. 26, No. 7, pp. 3142-3155DOI
Wang T., Sun M., Hu K., Boston, Dilated deep residual network for image denoising, in Proc. of IEEE 29th Int. Conf. Tools with Artificial Intelligence, Boston, MA, USA, pp. 1272-1279DOI
Tian C., Xu Y., Fei L., Wang J., Luo J. Wen and N., 2019, Enhanced CNN for image denoising, IET-CAAI Trans. Intelligence Technology, Vol. 4, No. 1, pp. 17-23DOI
Zhang F., Cai N., Wu J., G , Cen , Wang H., Chen X., 2018, Image denoising method based on a deep convolution neural network, IET Image Process., Vol. 12, No. 4, pp. 485-493DOI
Chen C., Xu Z., 2018, Aerial-image denoising based on convolutional neural network with multi-scale residual learning approach, Information Journal, Vol. 9, No. 7, pp. 169-186DOI
Tassano M., Delon J., Veit T., 2019, An analysis and implementation of the FFDNet image denoising method, Image Processing On Line Journal, Vol. 9, pp. 1-25DOI
Li Y., Huang J-B., Ahuja N., Yang M. H., 2019, Joint image filtering with deep convolutional networks, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 41, No. 8, pp. 1-14DOI