Mobile QR Code QR CODE

REFERENCES

1 
World Health Organization. , Coronavirus disease Situation Report-150., Retrieved from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reportsURL
2 
Zhuang J., Cai J., Wang R., Zhang J., Zheng WS., 2020, Deep kNN for Medical Image Classification., In: Martel A.L. et al. (eds) Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science. Springer, Cham., Vol. 12261DOI
3 
Xinran Li, Chenhui Xiang., 2012, Correlation-based K-nearest neighbor algorithm., 2012 IEEE International Conference on Computer Science and Automation Engineering, Beijing, pp. 185-187DOI
4 
Pooch E.H.P., Ballester P., Barros R.C., MIL3ID 2020, Semi-supervised Classification of Chest Radiographs., In: Cardoso J. et al. (eds) Interpretable and Annotation-Efficient Learning for Medical Image Computing. IMIMIC 2020, MIL3ID 2020, LABELS 2020. Lecture Notes in Computer Science Springer, Cham., Vol. 12446DOI
5 
Inés A., Domínguez C., Heras J., Mata E., Pascual. V., Biomedical image classification made easier thanks to transfer and semi-supervised learning.DOI
6 
Marco Tulio Ribeiro , Sameer Singh , Carlos Guestrin. , 2016, Why should i trust you?: Explaining the predictions of any classifier., In:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. 2016, pp. 1135-1144.DOI
7 
Maduskar P., Philipsen RH., Melendez J., Scholten E., Chanda D., Ayles H., Sánchez CI., van Ginneken B., 2016 Feb., Automatic detection of pleural effusion in chest radiographs., Med Image Anal., Vol. 28, pp. 22-32DOI
8 
Jeremy Irvin , Pranav Rajpurkar , Michael Ko , Yifan Yu , Silviana Ciurea-Ilcus , Chris Chute , Henrik Marklund , Behzad Haghgoo , Robyn Ball , Katie Shpanskaya , et al. , 2019, Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison., In Thirty-Third AAAI Conference on Articial IntelligenceDOI
9 
Ren Z., Hu Y., 2019, , Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms., Respir Res 20, Vol. 220, pp. -DOI
10 
Yujun Yang , Jianping Li , Yimei Yang , 2015, The research of the fast SVM classifier method, 2015 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, pp. 121-124DOI
11 
Kern C., Klausch T., Kreuter F., 2019, . Tree-based Machine Learning Methods for Survey Research., Survey research methods, Vol. 13, No. 1, pp. 73-93DOI
12 
Shu CC, Wang JY, Hsu CL, et al. , 2015, Diagnostic role of inflammatory and anti-inflammatory cytokines and effector molecules of cytotoxic T lymphocytes in tuberculous pleural effusion., Respirology., Vol. 20, No. 1, pp. 147-54DOI
13 
Rajpurkar P, Irvin J, Ball RL, 2018 Nov. 20, , Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists., PLoS Med., Vol. 15, No. 11, pp. e1002686.-DOI
14 
Cicero M, Bilbily A, Colak E, Dowdell T, Gray B, Perampaladas K, 2017 May., Training and Validating a Deep Convolutional Neural Network for Computer-Aided Detection and Classification of Abnormalities on Frontal Chest Radiographs., Invest Radiol., Vol. 52, No. 5, pp. 281-287DOI
15 
Alex Krizhevsky , Ilya Sutskever , Geoffrey E. Hinton. , 2012, ImageNet classification with deep convolutional neural networks., In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS’12). Curran Associates Inc. Red Hook, NY, USA, pp. 1097-1105DOI
16 
Szegedy C, Liu W, Jia Y, et al. , 2015, Going deeper with convolutions., In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition., pp. 1-9DOI
17 
M. Arief Bustomi , Anifatul Faricha , Alfiana Ramdhan , Faridawati1 , 2018, Integrated image processing analysis and Naïve Bayes Classifier method for lungs X-ray image classification, ARPN Journal of Engineering and Applied Sciences. 2018, pp. 718-724DOI
18 
Sunny Mahesh , Eliana Marostica , ,Automated Classification of Pleural Effusion in Chest X-rays., Harvard Medical School Department of Biomedical Informatics.DOI
19 
Hamed Behzadi-khormouji , Habib Rostami , Sana Salehi , Touba Derakhshande-Rishehri , Marzieh Masoumi , Siavash Salemi , Ahmad Keshavarz , Ali Gholamrezanezhad , Majid Assadi , Ali Batouli , 2019, Deep Learning, Reusable and Problem Based Architectures for Detection of Consolidation on Chest X-Ray Images, Computer Methods and Programs in BiomedicineDOI
20 
C.C. Ting , B.F. Wu , M.L. Chung , C.C. Chiu , Y.C. Wu , 2015, Visual contrast enhancement algorithm based on histogram equalization, Sensors (Switzerland)., Vol. 15, pp. 16981-16999DOI
21 
Singh K., Vishwakarma D.K., Walia G.S., Kapoor R., 2016, Contrast enhancement via texture region based histogram equalization, J. Mod. Opt., Vol. 63, pp. 1444-1450DOI
22 
Shen D., Wu G., Suk. H.-I., 2017, Deep Learning in Medical Image Analysis, Annu. Rev. Biomed. Eng., Vol. 19, pp. 221-248DOI
23 
Shen D., Wu G., Suk. H.-I., 2017, Deep Learning in Medical Image Analysis, Annu. Rev. Biomed. Eng., Vol. 19, pp. 221-248DOI
24 
JeremyIrvin , PranavRajpurkar , MichaelKo , YifanYu , SilvianaCiurea-Ilcus , ChrisChute , HenrikMarklund , BehzadHaghgoo , RobynBall , KatieShpanskaya , JayneSeekins , DavidA.Mong , SafwanS.Halabi , JesseK.Sandberg , RickyJones , DavidB.Larson , CurtisP.Langlotz , BhavikN.Patel , MatthewP.Lungren , CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison.DOI
25 
Muhammad Rehman Zafar , Naimul Mefraz Khan. , , DLIME: A Deterministic Local Interpretable Model-Agnostic Explanations Approach for Computer-Aided Diagnosis Systems.URL
26 
Wang F., Rudin. C., 2015, Falling rule lists., In Artificial Intelligence and Statistics (AISTATS)URL
27 
Wall Nathan , Palanisamy Muthu , Santerre John , 2019, Automated Pleural Effusion Detection on Chest X-Rays, SMU Data Science Review:, Vol. 2, No. 2, pp. article 15URL
28 
Malhi A., Kampik T., Pannu H. S., Madhikermi M., Främling K., 2019, Explaining Machine Learning-based Classifications of in-vivo Gastral Images., In 2019 Digital Image Computing: Techniques and Applications (DICTA) [8945986] IEEE.DOI
29 
Holzinger A., Biemann C., Pattichis C. S., Kell D. B., What do we need to build explainable ai systems for the medical domain?DOI
30 
Singh R, Kalra MK, Nitiwarangkul C, Patti JA, Homayounieh F, Padole A, et al., 2018, Deep learning in chest radiography: Detection of findings and presence of change., PLoS ONE 13(10): e0204155.DOI