Mobile QR Code QR CODE


Huang T.H, Kao H.Y, Dec 10, 2018, R2-D2: ColoR-inspired Convolutional NeuRalNetwork (CNN)-based AndroiD Malware Detections., IEEE BigData 2018, pp. 2633-2642DOI
Anthony Desnos , 2019, Androguard Documentation, Release 3.4.0Google Search
Gennissen J., Blasco J., , Gamut: Sifting through Images to Detect Android Malware., June-25-2017URL
Szegedy C., Ioffe S., Vanhoucke V., Alemi. A.A., 2017 Feb 12, Inception-v4, inception-resnet and the impact of residual connections on learning., In Thirty-First AAAI Conference on Artificial IntelligenceURL
Nataraj L., Karthikeyan S., Jacob G., 2011, Malware images: visualization and automatic classification., In Proceedings of the 8th international symposium on visualization for cyber security, p. 4. ACMDOI
Arp D., Spreitzenbarth M., Hubner M., Gascon H., Rieck K., Siemens. C.E., 2014 Feb 23, Drebin: Effective and explainable detection of android malware in your pocket., In Ndss, Vol. 14, pp. 23-26DOI
Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna. Z., , Rethinking the inception architecture for computer vision., In Proceedings of the IEEE conference on computer vision and pattern recognition 2016, pp. 2818-2826DOI
2020 , McAfee Mobile Threat Report Q1Google Search
Enck W., Gilbert P., gon Chun B., Cox L. P., Jung J., McDaniel P., Sheth. A., 2010, Taintdroid: An information-flow tracking system for realtime privacy monitoring on smartphones., In Proc. of USENIX Symposium on Operating Systems Design and Implementation (OSDI), pp. pages 393-407DOI
Zhou Y., Wang Z., Zhou W., Jiang. X., 2012, Hey, you, get off of my market: Detecting malicious apps in official and alternative android markets., In Proc. Of Network and Distributed System Security Symposium (NDSS)URL
Yan L.-K., Yin. H., 2012, Droidscope: Seamlessly reconstructing os and Dalvik semantic views for dynamic android malware analysis., In Proc. of USENIX Security SymposiumDOI
Vidas T., Christin N., June 2014, Evading Android Runtime Analysis via Sandbox Detection, in Proceedings of the 9th ACM symposium on Information, computer and communications security (ASIA CCS ’14), Kyoto, JapanDOI
Yang C., Xu Z., Gu G., Yegneswaran V., Porras P., September 2014, DroidMiner: Automated Mining and Characterization of Fine-grained Malicious Behaviors in Android Applications., in Proceedings of the 19th European Symposium on Research in Computer Security(ESORICS’14), Wroclaw, PolandDOI
William Hardy , Lingwei Chen , Shifu Hou , Yanfang Ye , 2016, DL4MD: A Deep Learning Framework for Intelligent Malware Detection, International Conference on Data Mining (DMIN)DOI
Krizhevsky A., Sutskever I., Hinton G. E., 2012, ImageNet Classification with Deep Convolutional Neural Networks, in Advances in Neural Information Processing Systems 25 (NIPS 2012) , Harrahs and Harveys, Lake Tahoe, pp. 1097-1105URL
Simonyan A. Z. K., 2015, Very Deep Convolutional Networks for LargeScale Image Recognition, in International Conference on Learning Representations 2015 (ICLR2015), San Diego, CAURL
Saxe J., Berlin K., 2015, Deep neural network based malware detection using two dimensional binary program features, 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), FajardoDOI
Yuan Z., Lu Y., Wang Z., Xue Y., 2014, Droid-Sec: deep learning in android malware detection, in Proceedings of the 2014 ACM conference on SIGCOMM, Chicago, Illinois, USADOI