Mobile QR Code QR CODE


Yun I. C., 2019, A Strategy of Application for Smart Factories to the Precision Machining Industry., Republic of Korea: Korea Smart Manufacturing Industry Association.Google Search
Bhandari B., Lee M., 2019, Haptic identification of objects using tactile sensing and computer vision., Advances in Mechanical Engineering, Vol. 11, No. 4DOI
Kim DH. , Kim , T.J.Y. , Wang X. , et al. , 2018, Smart Machining Process Using Machine Learning: A Review and Perspective on Machining Industry., Int. J. of Precis. Eng. and Manuf.-Green Tech. 5, pp. 555-568DOI
Lee G., Kim M., Quan Y., et al. , 2018, Machine health management in smart factory: A review., J Mech Sci Technol 32, pp. 987-1009.DOI
Rojko A., 2017, Industry 4.0 concept: background and overview., International Journal of Interactive Mobile Technologies (iJIM), Vol. 11, No. 5, pp. 77-90DOI
Kim M. H., Jung S. H., Lee C. G., 2019, Effect of Smart Factory Adoption and Policy Implications., KOREA DEVELOPMENT INSTITUTE.DOI
Jeong Y-S., 2019, A Model Design for Enhancing the Efficiency of Smart Factory for Small and Medium-Sized Businesses Based on Artificial Intelligence., Journal of Convergence for Information Technology, Vol. 9, No. 3, pp. 16-21DOI
Szeliski R., 2010, Computer vision: algorithms and applications., Springer Science & Business Media.DOI
Deng L., Yu Dong., 2014, Deep Learning: Methods and Applications., Foundations and Trends® in Signal Processing, Vol. 7(3–4), pp. 197-387DOI
Cook R. L., 1982, A Reflectance Model for Computer Graphics., ACM Transactions on Graphics, Vol. 1, No. 1, pp. 18DOI
Pharr M., Jakob W., Humphreys G., 2016, Physically based rendering: From theory to implementation., Morgan Kaufmann.DOI
International Organization for Standardization. , 1997, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters (ISO Standard No. 4287:1997DOI
International Organization for Standardization. 이름, 2002, Geometrical Product Specifications (GPS). Indication of surface texture in technical product documentation, ISO Standard No. 1302:2002DOI
Culjak I., Abram D., Pribanic T., Dzapo H., Cifrek M., 2012, A brief introduction to OpenCV., 2012 Proceedings of the 35th International Convention MIPRO, Opatija, pp. 1725-1730URL
Walt S. V. D., Colbert S. C., Varoquaux G., 2011, The NumPy array: a structure for efficient numerical computation., Computing in Science & Engineering, Vol. 13, No. 2, pp. 22-30DOI
Gallego A. J., Calvo-Zaragoza J., Valero-Mas J. J., Rico-Juan J. R., 2018, Clustering-based k-nearest neighbor classification for large-scale data with neural codes representation., Pattern Recognition, Vol. 74, pp. 531-543DOI
Saito G., 2017, Deep Learning from Scratch, O’ReillyURL
Bradski G., Kaehler A., 2008, Learning OpenCV: Computer vision with the OpenCV library., O'Reilly Media Inc.URL
Hochreiter S., Schmidhuber J., 1997, Long short-term memory., Neural computation, Vol. 9, No. 8, pp. 1735-1780DOI
Schuster M., Paliwal K. K., 1997, Bidirectional recurrent neural networks., IEEE transactions on Signal Processing, Vol. 45, No. 11, pp. 2673-2681DOI
Bergstra J., Bengio Y., 2012, Random search for hyper-parameter optimization., Journal of machine learning research, Vol. 13, No. feb, pp. 281-305URL
Chollet F., Others. , 2019, keras-tuner, GitHub repositoryURL
Geron A., 2019, Hands-on machine learning with Scikit-Learn, Keras & TensorFlow concepts tools and techniques to built intelligent systems, 2nd edition, O’ReillyURL