Mobile QR Code QR CODE

REFERENCES

1 
Garcia-Lamont F., Cervantes J., Lopez A., Rodriguez L., 2018, Segmentation of images by color features: A survey, Neurocomputing, Vol. 292, pp. 1-27DOI
2 
Yang M., Kpalma K., Ronsin J., 2008, A survey of shape feature extraction techniques, Pattern Recognition TechniquesURL
3 
Humeau-Heurtier A., 2019, Texture feature extraction methods: A survey, IEEE Access, Vol. 7, pp. 8975-9000DOI
4 
Kim T., Kim D., Kim P., Kim P., Dec. 2016, The Design of Object-of-Interest Extraction System Utilizing Metadata Filtering from Moving Object, Journal of KIISE, Vol. 43, No. 12, pp. 1351-1355DOI
5 
Geronimo D., Kjellstrom H., Aug. 2014, Unsupervised surveillance video retrieval based on human action and appearance, in Proc. IEEE Int. Conf. Pattern Recognit, pp. 4630-4635DOI
6 
Yuk J.S-C., Wong K-Y.K., Chung R.H-Y., Chow K.P., Chin F. Y-L., Tsang K. S-H., 2007, Object based surveillance video retrieval system with realtime indexing methodology, The Proceedings of the International Conference on Image Analysis and Recognition, pp. 626-637DOI
7 
Paek I., Park C., Ki M., park K., Paik J., November 2007, Multiple-view object tracking using metadata, Proc. Int. Conf. Wavelet Analysis and Pattern Recognition, Vol. 1, No. 1, pp. 12-17DOI
8 
Jung J., Yoon I., Lee S., Paik J., June 2016, Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras, Sensors, Vol. 16, No. 7, pp. 1-9DOI
9 
Yun S., Yun K., Kim S.W., Yoo Y., Jeong J., 26-29 Aug. 2014, Visual surveillance briefing system: Event-based video retrieval and summarization, In Proceedings of the 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 204-209DOI
10 
Chavda H. K., Dhamecha M., 2017, Moving object tracking using PTZ camera in video surveillance system, 2017 International Conference on Energy, Communication, Data Analytics and Soft ComputingDOI
11 
Hou L., Wan W., Lee K-H., Hwang J-N., Okopal G., Pitton J., 2017, Robust Human Tracking Based on DPM Constrained Multiple-Kernel from a Moving Camera, Journal of Signal Processing Systems, Vol. 86, No. 1, pp. 27-39DOI
12 
Wu S., Oreifej O., Shah M., Nov. 2011, Action recognition in videos acquired by a moving camera using motion decomposition of Lagrangian particle trajectories, IEEE International Conference on Computer Vision(ICCV), pp. 1419-1426DOI
13 
Seemanthini K., Manjunath S. S., Jan. 2018, Human detection and tracking using HOG for action recognition, Procedia Comput Science, Vol. 132, pp. 1317-1326DOI
14 
Patel C.I., Garg S., Zaveri T., Banerjee A., Aug. 2018, Human action recognition using fusion of features for unconstrained video sequences, Computers and Electrical Engineering, Vol. 70, pp. 284-301DOI
15 
Redmon J., Farhadi A., April 2018, YOLOv3: An Incremental Improvement, IEEE Conference on Computer Vision and Pattern Recognition (CVPR)URL
16 
Ren S., He K., Girshick R., Sun J., 2015, Faster R-CNN: Toward Real-Time Object Detection with Region Proposal Networks, Advances in Neural Information Processing Systems 28 (NIPS)URL
17 
Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C. Y., Berg A. C., September 2016, SSD: Single Shot MultiBox Detector, European Conference on Computer Vision(ECCV), pp. 21-37DOI
18 
Chen L. C., Zhu Y., Papandreou G., Schroff F., Adam H., 2018, Encoder-decoder with atrous separable convolution for semantic image segmentation, European Conference on Computer Vision(ECCV)URL
19 
Joost van de Weijer J. V., Cordelia Schmid , Larlu D., 2009, Learning color names from real-world applications, in IEEE Transactions on Image Processing, Vol. 18, pp. 1512-1523DOI
20 
Zheng Z., Zheng L., Yang Y., 2017, Unlabeled Samples Generated by GAN Improve the Person Re-Identification Baseline in Vitro, arXiv preprint arXiv:1701.07717URL