Mobile QR Code QR CODE

REFERENCES

1 
Mukherjee S., Patel S. R., Kales S. N., Ayas N. T., Strohl K. P., Gozal D., Malhotra A., 2015, An official American Thoracic Society statement: the importance of healthy sleep. Recommendations and future priorities., American journal of respiratory and critical care medicine, Vol. 191, No. 12DOI
2 
Chokroverty S., 2010, Overview of sleep & sleep disorders, Indian J. Med. Res., Vol. 131, No. 2, pp. 126-140Google Search
3 
Krystal A. D., Edinger J. D., 2008, Measuring sleep quality, Sleep Med., Vol. 9, No. suppl. 1, pp. 10-17DOI
4 
Berry R. B., et al. , 2017, AASM scoring manual updates for 2017 (version 2.4), J. Clin. Sleep Med., Vol. 13, No. 5, pp. 665-666DOI
5 
Whitney C. W., et al. , 1998, Reliability of scoring respiratory disturbance indices and sleep staging, Sleep, Vol. 21, No. 7, pp. 749-757DOI
6 
Fraiwan L., Lweesy K., Khasawneh N., Wenz H., Dickhaus H., 2012, Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier, Comput. Methods Programs Biomed., Vol. 108, No. 1, pp. 10-19DOI
7 
Shen X., Fan Y., 2012, Sleep stage classification based on eeg signals by using improved hilbert-huang transform, Appl. Mech. Mater., Vol. 138-139, pp. 1096-1101DOI
8 
Supratak A., Dong H., Wu C., Guo Y., 2017, DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG, IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 25, No. 11, pp. 1998-2008DOI
9 
Phan H., Andreotti F., Cooray N., Oliver Chen Y., De Vos M., 2018, DNN Filter Bank Improves 1-Max Pooling CNN for Single-Channel EEG Automatic Sleep Stage Classification, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, Vol. 2018-july, pp. 453-456DOI
10 
Zhu T., Luo W., Yu F., 2020, Convolution-and attention-based neural network for automated sleep stage classification, Int. J. Environ. Res. Public Health, Vol. 17, No. 11, pp. 1-13DOI
11 
Ismail Fawaz H., et al. , 2020, InceptionTime: Finding AlexNet for time series classification, Data Min. Knowl. Discov., Vol. 34, No. 6, pp. 1936-1962DOI
12 
M. A., Alex Graves G. H., 2013, Speech Recognition with Deep Recurrent Neural Networks, Department of Computer Science, University of Toronto, Dep. Comput. Sci. Univ. Toronto, Vol. 3, No. 3, pp. 45-49DOI
13 
Dietterich, Thomas G. , 2002, Ensemble learning The handbook of brain theory and neural networks 2.1, pp. 110-125Google Search
14 
Luo W., Li Y., Urtasun R., Zemel R., 2016, Understanding the effective receptive field in deep convolutional neural networks, Adv. Neural Inf. Process. Syst., no. Nips, pp. 4905-4913URL
15 
Goldberger A. L., Amaral L. A., Glass L., Hausdorff J. M., Ivanov P. C., Mark R. G., Stanley H. E., 2000, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals., circulation 101.23.DOI
16 
T. Hori, et al. , 2001, Proposed supplements and amendments to ‘A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects’, the Rechtschaffen & Kales (1968) standard, Psychiatry Clin. Neurosci., Vol. 55, No. 3, pp. 305-310DOI
17 
Stone M., 1974, Cross-Validatory Choice and Assessment of Statistical Predictions, J. R. Stat. Soc. Ser. B, Vol. 36, No. 2, pp. 111-133DOI
18 
Tsinalis O., Matthews P. M., Guo Y., 2016, Automatic Sleep Stage Scoring Using Time-Frequency Analysis and Stacked Sparse Autoencoders, Ann. Biomed. Eng., Vol. 44, No. 5, pp. 1587-1597DOI
19 
Seo H., Back S., Lee S., Park D., Kim T., Lee K., 2020, Intra- and inter-epoch temporal context network (IITNet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG, Biomed. Signal Process. Control, Vol. 61DOI
20 
Eldele E., et al. , 2021, An Attention-Based Deep Learning Approach for Sleep Stage Classification With Single-Channel EEG, in IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 29, pp. 809-818DOI