Mobile QR Code QR CODE

REFERENCES

1 
2021, Electricity Company of VietnamURL
2 
United Nations Environment Program , 2020, 2019 Global Status Report for Buildings and Construction Sector.URL
3 
Sargisson L., 2012, Fool’s Gold?: Utopianism in the Twenty-First Century, Springer, ISBN 9781137031075, Google describes Emporis.com as the first global provider of building data, the world’s database for buildings.DOI
4 
Lissa Paulo, Peretti Correa Dayanne, Schukat Michael, Barrett Enda, Seri Federico, Keane Marcus, 2019, Machine Learning Methods Applied to Building Energy Production and Consumption Prediction.URL
5 
Gonzlez-Briones A., Hernández G., Corchado J. M., Omatu S., Mohamad M. S., 2019, Machine Learning Models for Electricity Consumption Forecasting: A Review, International Conference on Computer Applications & Information Security (ICCAIS)DOI
6 
Klemenjak Christoph, Reinhardt Andreas, Pereira Lucas, Makonin Stephen, Bergs Mario, 2019, Electricity Consumption Data Sets: Pitfalls and Opportunities., pp. 159-162DOI
7 
Li Zhang., 2020, Abnormal Energy Consumption Analysis Based on Big Data Mining Technology., pp. 64-68DOI
8 
Vantuch T., Vidal A. G., Ramallo-Gonzlez A. P., 2018, ,Machine learning based electric load forecasting for short and long-term period, 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) 2018, pp. 511-516DOI
9 
Ashouri Milad, Fung Benjamin, Haghighat Fariborz, Yoshino Hiroshi., 2019, Systematic Approach to Provide Building Occupants with Feedback to Reduce Energy Consumption., Energy. 194. 116813.DOI
10 
Chengliang Xu , Huanxin Chen , 2020, ,A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data, Energy and Buildings, Volume 215, 15 May 2020, 109864DOI
11 
Ullah A, Haydarov K, Ul Haq I, Muhammad K, Rho S, Lee M, Baik SW, 2020, Deep Learning Assisted Buildings Energy Consumption Profiling Using Smart Meter Data., Sensors. 20. 873. 10.3390/s20030873.DOI
12 
Barber David, Cemgil A. Taylan, 2011, , Bayesian time series models., Cambridge University Press.DOI
13 
Meuleau N., Peshkin L., Kim K.-E., 1999, , Learning finite state controllers for partially observable environments., In Proceedings of Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. pages 427-436URL
14 
Ackley D. H., Hinton G. E., Sejnowski T. J., 1985, A Learning Algorithm for Boltzmann Machines., Cognitive Science, Vol. 9, pp. 147-169DOI
15 
Hastie T., Friedman J., 2001, ,Boosting and Additive Trees., In: The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York, NY.DOI
16 
Madeh Piryonesi S., El-Diraby Tamer E., 2020, Data Analytics in Asset Management: Cost-Effective Prediction of the Pavement Condition Index., Journal of Infrastructure Systems. 26 (1): 04019036. ISSN 1943-555X.DOI
17 
Pelleg Dan, Moore Andrew, 1999, Accelerating exact k-means algorithms with geometric reasoning., Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’99. San Diego, California, United States: ACM Press: 277281.DOI
18 
2021, The electricity consumption price of Electricity of VietnamURL
19 
Chen Tianqi, Guestrin Carlos, XGBoost: A Scalable Tree Boosting System., In Krishnapuram, Balaji; Shah, Mohak; Smola, Alexander J.; Aggarwal, Charu C.; Shen, Dou; Rastogi, Rajeev (eds.). Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. ACM. pp. 785794.DOI
20 
Hyndman Rob J, Athanasopoulos George., 8.9. Forecasting: principles and practice., texts. Retrieved 19 May 2015.URL
21 
Chen Z., Zhao YL., Pan XY., Dong ZY., Gao B., Zhong ZW., 2009, An Overview of Prophet., In: Hua A., Chang SL., eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2009. Lecture Notes in Computer Science, vol 5574. Springer, Berlin, Heidelberg.DOI