Mobile QR Code QR CODE

REFERENCES

1 
Chokroverty, Sudhansu. , 1999, Overview of sleep & sleep disorders., Indian J Med Res, Vol. 131, No. 2, pp. 126-140Google Search
2 
Factor S. A., McAlarney T., Sanchez‐Ramos J. R., Weiner W. J., 1990, Sleep disorders and sleep effect in Parkinson’s disease, Mov. Disord., Vol. 5, No. 4, pp. 280-285DOI
3 
Ju Y.-E. S., Lucey B. P., Holtzman D. M., 2013, Sleep and alzheimer disease pathology-a bidirectional relationship, Nature Reviews Neurology, Vol. 10, No. 2, pp. 115-119DOI
4 
Leng M., Yin H., Zhang P., Jia Y., Hu M., Li G., Wang C., Chen L., 2020, Sleep quality and health-related quality of life in older people with subjective cognitive decline, mild cognitive impairment, alzheimer disease, Journal of Nervous & Mental Disease, Vol. 208, No. 11, pp. 913-913DOI
5 
Mouthon A.-L., Huber R., 2015, Methods in pediatric sleep research and sleep medicine, Neuropediatrics, Vol. 46, No. 03, pp. 159-170DOI
6 
Whitney C. W., Gottlieb D. J., Redline S., Norman R. G., Dodge R. R., Shahar E., Surovec S., Nieto F. J., 1998, Reliability of scoring respiratory disturbance indices and sleep staging, Sleep, Vol. 21, No. 7, pp. 749-757DOI
7 
Supratak A., Dong H., Wu C., Guo Y., 2017, Deepsleepnet: A model for automatic sleep stage scoring based on raw single-channel eeg, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 25, No. 11, pp. 1998-2008DOI
8 
Schmidhuber J., 2015, Deep learning in neural networks: An overview, Neural Networks, Vol. 61, pp. 85-117DOI
9 
Buhrmester V., Münch D., Arens M., 2019, Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey, no. Ml, pp. 1-22URL
10 
Mousavi S., Afghah F., Acharya U. R., 2019, Sleepeegnet: Automated sleep stage scoring with sequence to sequence deep learning approach, PLOS ONE, Vol. 14DOI
11 
Buhrmester V., Münch D., Arens M., 2019, Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey, no. Ml, pp. 1-22DOI
12 
Buhrmester V., Münch D., Arens M., 2019, Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey, no. Ml, pp. 1-22DOI
13 
Pocevičiūtė M., Eilertsen G., Lundström C., 2020, Survey of Xai in digital pathology, Artificial Intelligence and Machine Learning for Digital Pathology, pp. 56-88DOI
14 
Daud S. S., Sudirman R., 2015, Butterworth bandpass and Stationary wavelet transform Filter comparison For Electroencephalography Signal, 2015 6th International Conference on Intelligent Systems, Modelling and SimulationDOI
15 
Hassan A. R., Subasi A., 2017, A decision support system for automated identification of sleep stages from SINGLE-CHANNEL EEG signals, Knowledge-Based Systems, Vol. 128, pp. 115-124DOI
16 
Buhrmester V., Münch D., Arens M., 2019, Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey, no. Ml, pp. 1-22URL
17 
Buhrmester V., Münch D., Arens M., 2019, Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey, no. Ml, pp. 1-22URL
18 
Buhrmester V., Münch D., Arens M., 2019, Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey, no. Ml, pp. 1-22URL
19 
Buhrmester V., Münch D., Arens M., 2019, Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey, no. Ml, pp. 1-22URL
20 
Buhrmester V., Münch D., Arens M., 2019, Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey, no. Ml, pp. 1-22URL
21 
Tibdewal M. N., Mahadevappa M., Ray A. K., Malokar M., Dey H. R., 2016, Power line and ocular artifact denoising from EEG using notch filter and wavelet transform, Proc. 10th INDIACom; 2016 3rd Int. Conf. Comput. Sustain. Glob. Dev. INDIACom 2016, pp. 1654-1659URL
22 
Schirm L., 1979, Fast Fourier Transforms., New Electron, Vol. 12, No. 2DOI
23 
Arneodo A., Grasseau G., Holschneider M., 1988, Wavelet transform of multifractals, Physical Review Letters, Vol. 61, No. 20, pp. 2281-2284DOI
24 
Kevric J., Subasi A., 2017, Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system, Biomed. Signal Process. Control, Vol. 31, pp. 398-406DOI
25 
Hastie T., Friedman J., Tisbshirani R., 2017, The elements of statistical learning: Data mining, inference, prediction., New York: SpringerURL
26 
Sokolova M., Japkowicz N., Szpakowicz S., 2006, Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation, AAAI Work. - Tech. Rep., Vol. ws-06-06, pp. 24-29DOI
27 
Sokolova M., Japkowicz N., Szpakowicz S., 2006, Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation, AAAI Work. - Tech. Rep., Vol. ws-06-06, pp. 24-29DOI
28 
Sokolova M., Japkowicz N., Szpakowicz S., 2006, Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation, AAAI Work. - Tech. Rep., Vol. ws-06-06, pp. 24-29DOI
29 
Abeln V., Kleinert J., Strüder H. K., Schneider S., 2014, Brainwave entrainment for better sleep and post-sleep state of young elite soccer players - A pilot study, Eur. J. Sport Sci., Vol. 14, No. 5, pp. 393-402DOI
30 
Abeln V., Kleinert J., Strüder H. K., Schneider S., 2014, Brainwave entrainment for better sleep and post-sleep state of young elite soccer players - A pilot study, Eur. J. Sport Sci., Vol. 14, No. 5, pp. 393-402DOI
31 
Kovács B., Tinya F., Németh C., Ódor P., 2020, Unfolding the effects of different forestry treatments on microclimate in oak forests: results of a 4-yr experiment, Ecol. Appl., Vol. 30, No. 2, pp. 321-357DOI
32 
Wang F., Zhong S. H., Peng J., Jiang J., Liu Y., 2018, Data augmentation for eeg-based emotion recognition with deep convolutional neural networks, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Vol. 10705 LNCS, pp. 82-93DOI