Mobile QR Code QR CODE

REFERENCES

1 
Steane A., Feb. 1998, Quantum computing, Rep. Prog. Phys., Vol. 61, No. 2, pp. 117-173DOI
2 
Hey T., Jun. 1999, Quantum computing: An introduction, Comput. Control Eng. J., Vol. 10, No. 3, pp. 105-112DOI
3 
(accessed Oct. 18, 2021), D-Wave Systems - The Practical Quantum Computing Company., https://www.dwavesys.comURL
4 
Hu F., et al. , Apr. 2020., Quantum computing cryptography: Finding cryptographic Boolean functions with quantum annealing by a 2000 qubit D-wave quantum computer, Phys. Lett. A, Vol. 384, No. 10, pp. 126214DOI
5 
Hu F., Lamata L., Wang C., Chen X., Solano E., Sanz M., May 2020., Quantum Advantage in Cryptography with a Low-Connectivity Quantum Annealer, Phys. Rev. Applied, Vol. 13, No. 5, pp. 054062DOI
6 
Preskill J., Aug. 2018, Quantum Computing in the NISQ era and beyond, Quantum, Vol. 2, pp. 79DOI
7 
Lidar D. A., Brun T. A., 2013, Quantum Error Correction., Cambridge University PressDOI
8 
Devitt S. J., Munro W. J., Nemoto K., Jun. 2013., Quantum error correction for beginners, Rep. Prog. Phys., Vol. 76, No. 7, pp. 076001DOI
9 
Steane A. M., May 1999, Efficient fault-tolerant quantum computing, Nature, Vol. 399, No. 6732, pp. 124-126DOI
10 
Linke N. M., et al. , Nov. 21, 2016., Fault-tolerant quantum error detection, Sci. Adv., Vol. 3, No. 10, pp. e1701074DOI
11 
Chiaverini J., et al. , Dec. 2004, Realization of quantum error correction, Nature, Vol. 432, No. 7017, pp. 602-605DOI
12 
(accessed Oct. 18, 2021), Stabilizer Codes and Quantum error correction - ProQuest.URL
13 
Brun T. A., Oct. 2019, Quantum Error CorrectionDOI
14 
Abdessaied N., Wille R., Soeken M., Drechsler R., 2013, Reducing the Depth of Quantum Circuits Using Additional Circuit Lines, in Reversible Computation, vol. 7948, G. W. Dueck and D. M. Miller, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 221-233.DOI
15 
Xi Z., Li Y., Fan H., Jun. 2015., Quantum coherence and correlations in quantum system, Sci Rep, Vol. 5, No. 1, pp. 10922DOI
16 
(accessed Oct. 18, 2021), Qiskit., https://qiskit.orgURL
17 
(accessed Oct. 18, 2021), QuTiP - Quantum Toolbox in Python., https://qutip.orgURL
18 
Apr. 20, 2020., New t-ket>TM Release, Cambridge Quantum Computing(accessed Oct. 18, 2021).URL
19 
Li G., Ding Y., Xie Y., Apr. 2019, Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices, in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, Providence RI USA, pp. 1001-1014DOI
20 
Cowtan A., Dilkes S., Duncan R., Simmons W., Sivarajah S., On the qubit routing problem, pp. 29DOI
21 
Itoko T., Raymond R., Imamichi T., Matsuo A., Jan. 2020, Optimization of quantum circuit mapping using gate transformation and commutation, Integration, Vol. 70, pp. 43-50DOI
22 
Zulehner A., Paler A., Wille R., Jul. 2019, An Efficient Methodology for Mapping Quantum Circuits to the IBM QX Architectures, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 38, No. 7, pp. 1226-1236DOI
23 
Zhang C., Chen Y., Jin Y., Ahn W., Zhang Y., Zhang E. Z., A Depth-Aware Swap Insertion Scheme for the Qubit Mapping Problem, arXiv preprint, pp. 7DOI
24 
Niu S., Suau A., Staffelbach G., Todri-Sanial A., 2020, A Hardware-Aware Heuristic for the Qubit Mapping Problem in the NISQ Era, IEEE Trans. Quantum Eng., Vol. 1, pp. 1-14DOI
25 
(accessed Oct. 14, 2021), Quantum Circuits (qiskit.circuit) - Qiskit 0.31.0 Documentation.URL
26 
Zhang Y., Deng H., Li Q., Jan. 2020, Context-Sensitive and Duration-Aware Qubit Mapping for Various NISQ Devices, arXiv:2001.06887 [quant-ph]DOI