Mobile QR Code QR CODE

REFERENCES

1 
Han S., et al. , Feb. 2016, Deep Compression: Compressing Deep Neural Net-works with pruning, trained quantization and Huffman coding, In Proc. Int. Conf. Learning Represen. (ICLR)URL
2 
Aytekin C., Cricri F., Wang T., Aksu. E., Mar. 2019, Response to the Call for Proposals on Neural Network Compression: Training Highly Compressible Neural Networks, ISO/IEC JTC1/SC29/WG11, m47379URL
3 
Jung S., Son C., Lee S., Han J., Kwak Y., Hwang S., Jun. 2019, Learning to Quantize Deep Networks by Optimizing Quantization Intervals with Task Loss, In Proc. Int. Conf. Comput. Vis. Pattern Recognit. (CVPR)DOI
4 
Lin S., Ji R., Chen C., Tao D., Luo. J., Dec. 2019., Holistic CNN Compression via Low-Rank Decomposition with Knowledge Transfer, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 41, No. 12DOI
5 
Wailer B., Apr. 2021, DoC on ISO/IEC DIS 15938-17 Compression of Neural Networks for Multimedia Content Description and Analysis, ISO/IEC JTC1/SC29/WG04, N00079URL
6 
Bailer W., et al. , Jan. 2020, Test Model 3 of Compression of Neural Networks for Multimedia Content Description and Analysis, ISO/IEC JTC1/SC29/WG11, N18993URL
7 
Pytorch, [Available at Online] https://pytorch.orgURL
8 
Tensorflow, [Available at Online] https://www.tensorflow.org/URL
9 
Open Neural Network ExchangeGoogle Search
10 
Neural Network Exchange Format (The Khronos NNEF Working Group)Google Search
11 
Tensorflow Model Optimization Toolkit - Pruning API [Available at Online] https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.htmlURL
12 
Wiedemann S., et al. , May. 2019, DeepCABAC: Context-adaptive Binary Arithmetic Coding for Deep Neural Network Compression, in Proc. Int. Conf. Mach. Learning (ICML)URL
13 
Moon H., Kim J.-G., Kim S., Jang S., Choi B., Jun. 2020, [NNR] CE-4 Report on Neural Network compression: Local Non-linear Quantization (Method 12), ISO/IEC JTC1/SC29/WG11, m54386URL
14 
Bailer W., et al. , July. 2019, Evaluation Framework for Compression of neural networks for multimedia content description and analysis, ISO/IEC JTC1/SC29/WG11, N18575URL
15 
Kirchhoffer H., et al. , to be published, Overview of the Neural Network Compression and Representation (NNR) Standard, IEEE Trans. Circuits Syst. Video Technol., to be published.DOI
16 
Wiedemann S., et al. , Apr. 2020, [NNR] CE2-CE3-related: Local parameter scaling, ISO/IEC JTC1 SC29/WG11, m53517URL
17 
Aytekin C., et al. , Feb. 2019, Compressibility Loss for Network Weights, in arXiv:1905.01044URL