Mobile QR Code QR CODE

REFERENCES

1 
Cho S., Lee S., 2009, Fast motion deblurring, ACM Transactions on Graphics, Vol. 28, pp. 1-8DOI
2 
Beck A., Teboulle M., 2009, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Transactions on Image Processing, Vol. 18, pp. 2419-2434DOI
3 
Pan J., Sun D., Pfister H., Yang M., 2018, Deblurring images via dark channel prior, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 40, pp. 2315-2328DOI
4 
Perrone D., Favaro P., 2016, A clearer picture of total variation blind deconvolution, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 38, pp. 1041-1055DOI
5 
Xu L., Zheng S., Jia J., June 2013, Unnatural l0 sparse representation for natural image deblurring, in 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107-1114DOI
6 
Dabov K., Foi A., Katkovnik V., Egiazarian K., 2007, Image denoising by sparse 3-D transform domain collaborative filtering, IEEE Trans. on Image Processing, Vol. 16, pp. 2080-2095DOI
7 
Sapiro G., Caselles V., Ballester C., Bertalmio M., July 2000, Image inpainting, 27th annual conference on Computer graphics and interactive techniques, pp. 417-424DOI
8 
Levin A., Weiss Y., Durand F., Freeman W. T., June 2011, Efficient marginal likelihood optimization in blind deconvolution, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2011DOI
9 
Lai W. S., Huang J. B., Hu Z., Ahuja Z., Yang M. H., A comparative study for single image blind deblurring, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016, pp. 1701-1709DOI
10 
Sun L., Cho S., Wang J., Hays J., 2013, Edge-based blur kernel estimation using patch priors, IEEE International Conference on Computational Photography 2013, pp. 1-8DOI
11 
Xu L., Jia J., 2010, Two-phase kernel estimation for robust motion deblurring, European Conference on Computer Vision 2010, pp. 157-170DOI
12 
Zuo W., Ren D., Zhang D., Gu S., Zhang L., 2016, Learning iteration-wise generalized shrinkage-thresholding operators for blind deconvolution, IEEE Transactions on Image Processing, Vol. 25, pp. 1751-1764DOI
13 
Perrone D., Favaro P., 2014, Total variation blind deconvolution: the devil is in the details, IEEE Conference on Computer Vision and Pattern Recognition 2014, pp. 2909-2916DOI
14 
Michaeli T., Irani M., 2014, Blind deblurring using internal patch recurrence, European Conference on Computer Vision 2014, pp. 783-798DOI
15 
Krishnan D., Tay T., Fergus R., 2011, Blind deconvolution using a normalized sparsity measure, IEEE Conference on Computer Vision and Pattern Recognition 2011, pp. 233-240DOI
16 
Xu L., Ren J.S., Liu C., Jia J., 2014, Deep convolutional neural network for image deconvolution, 27th Int. Conf. Neural Inf. Process. Syst., pp. 1790-1798URL
17 
Yan R., Shao L., 2016, Blind image blur estimation via deep learning, IEEE Trans. Image Process., Vol. 25, pp. 1910-1921URL
18 
Zhang J., Pan J., Ren J., Song Y., Bao L., Lau R. W. H., Yang M. H., 2018, Dynamic scene deblurring using spatially variant recurrent neural networks, IEEE Conf. Comput. Vision Pattern Recognit., pp. 2521-2529DOI
19 
Tao X., Gao H., Shen X., Wang J., Jia J., 2018, Scale-recurrent network for deep image deblurring, IEEE Conf. Comput Vision Pattern Recognit., pp. 8174-8182URL
20 
Zhang K., Zuo W., Chen Y., Meng D., Zhang L., 2017, Beyond a gaussian denoiser: residual learning of deep cnn for image denoising, IEEE Transactions on Image Processing, Vol. 26, pp. 3142-3155DOI
21 
Zhang K., Zuo W., Gu S., Zhang L., Learning deep CNN denoiser prior for image restoration, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017.DOI
22 
Sahu S., Lenka M. K., Sa P. K., 2019, Blind deblurring using deep learning: a survey, arXiv:1907.10128URL
23 
Agarwal C., Khobahi S., Bose A., Soltanalian M., Schonfeld D., Oct. 2020, Deep-URL: a model-aware approach to blind deconvolution based on deep unfolded Richardson-Lucy network, IEEE International Conference on Image Processing 2020, pp. 25-28DOI
24 
Li Y., Tofighi M., Geng J., Monga V., Eldar Y. C., 2020, Efficient and interpretable deep blind image deblurring via algorithm unrolling, IEEE Transactions on Computational Imaging, Vol. 6, pp. 666-681DOI
25 
Schuler C. J., Burger H. C., Harmeling S., Scholkopf B., 2013, A machine learning approach for non-blind image deconvolution, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013, pp. 1067-1074DOI
26 
Zhang J., Pan J., Lai W. S., Lau R. W. H., Yang M. H., Learning fully convolutional networks for iterative non-blind deconvolution, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pp. 3817-3825DOI
27 
Asim M., Shamshad F., Ahmed A., 2020, Blind image deconvolution using deep generative priors, IEEE Transactions on Computational Imaging, Vol. 6, pp. 1493-1506DOI
28 
Ren D., Zhang K., Wang Q., Hu Q., Zuo W., Neural blind deconvolution using deep priors, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020, pp. 3341-3350DOI
29 
Ren D., Zhang K., Wang Q., Hu Q., Zuo W., Neural blind deconvolution using deep priors-supplementary material, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.DOI
30 
Ulyanov D., Vedaldi A., Lempitsky V., Deep image prior, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018, pp. 9446-9454URL
31 
Horé A., Ziou D., Image quality metrics: PSNR vs. SSIM, 20th International Conference on Pattern Recognition 2010.DOI
32 
Paszke A., Gross S., Chintala S., Chanan G., Yang E., DeVito Z., Lin Z., Desmaison A., Antiga L., Lerer A., Automatic differentiation in pytorch, NIPS Autodiff Workshop: The Future of Gradient-based Machine Learning Software and Techniques 2017.URL
33 
Kingma D., Adam J. B., 2014, Adam: a method for stochastic optimization, arXiv:1412.6980URL