Mobile QR Code QR CODE


Xuebin Q., Zichen Z., Chenyang H., Martin J., Aug. 2020., U2-Net: Going deeper with nested U-structure for salient object detection, Pattern Recognition, Vol. 106DOI
Taylor L., Geoff N., Nov. 2018., Improving deep learning with generic data augmentation, IEEE Symposium Series on Computational Intelligence, pp. 1542-1547DOI
Zhang H., Moustapha C., Yann N D., David L., Oct. 2017. , mixup: Beyond empirical risk minimization, arXiv preprint arXiv:1710.09412DOI
Takahashi R., Takashi M., Kuniaki U., 2019, Data augmentation using random image cropping and patching for deep CNNs, IEEE Transactions on Circuits and Systems for Video Technology 30.9, Vol. 30, No. 9, pp. 2917-2931DOI
Summers C., Michael J., Dinneen , Mar. 2019, Improved mixed-example data augmentation, Winter Conference on Applications of Computer Vision, pp. 1262-1270DOI
Zhong Z., Liang Z., Guoliang K., Yi Y., 2020, Random erasing data augmentation, Proceedings of the AAAI conference on artificial intelligence, Vol. 34, No. 7, pp. 13001-13008DOI
DeVries T., Graham W., Nov. 2017, Improved regularization of convolutional neural networks with cutout, arXiv preprint arXiv:1708.04552DOI
Sangdoo Y., Dongyoon H., Seong joon O., Junsuk C., 2019, cutmix: Regularization strategy to train strong classifiers with localizable features, Proceedings of the IEEE/CVF international conference on computer vision, pp. 6023-6032DOI
Creswell A., Tom W., Vincent D., Kai A., Jan. 2018, Generative adversarial networks: An overview, IEEE Signal Processing Magazine 35.1, Vol. 35, No. 1, pp. 53-65DOI
Tanaka F., Henrique K., Claus Aranha , Apr. 2019, Data augmentation using GANs, arXiv preprint arXiv:1904.09135DOI
Remez T., Huang J., Brown M., 2018, Learning to segment via cut-and-paste, in Proc. ECCV, pp. 37-52DOI
Dwibedi D., Ishan M., Martial Hebert , 2017, cut, paste and learn: Surprisingly easy synthesis for instance detection, Proceedings of the IEEE international conference on computer vision, pp. 1301-1310DOI
Tripathi S., Siddhartha C., Amit A., Ambrish T., 2019, Learning to generate synthetic data via compositing, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 461-470DOI
Sengdeok B., Francis B., Somin P., Wontae K., Jul. 2020, Image augmentation to improve construction resource detection using generative adversarial networks, cut and paste, image transformation techniques, Automation in Construction 115, Vol. 115DOI
Hummel , Robert A., Kimia B., Steven W., 1987, Deblurring gaussian blur, Computer Vision, Graphics, Image Processing 38.1, Vol. 38, No. 1, pp. 66-80DOI
Mariani G., Florian S., Roxana I., Costas B., Jun. 2018, Bagan: Data augmentation with balancing gan, arXiv preprint arXiv:1803.09655DOI
Tellez D., Geert L., B. Peter B, Dec. 2019, Wouter. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology, Medical image analysis 58, Vol. 58DOI
Hwang S., Minsong K., Seung L., Sanghoon P., 2022, cut and Continuous paste towards Real-time Deep Fall Detection, arXiv preprint arXiv: 2202.10687, pp. 1775-1779DOI
Bochkovskiy A., Chien-Yao Wang , Hong-Yuan M., Apr. 2020, Yolov4: Optimal speed and accuracy of object detection, arXiv preprint arXiv: 2004.10934DOI
Zhou F., Huailin Z., Zhen N., 2021, Safety helmet detection based on YOLOv5, International Conference on Power Electronics, Computer Applications, pp. 6-11DOI
Tan M., Ruoming P., Quoc LE V., 2020, Efficientdet: Scalable and efficient object detection, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10781-10790DOI