Mobile QR Code QR CODE


Wang R., Jia W., Mao Z. H., Sclabassi R. J., Sun M., 2014, October, Cuff-free blood pressure estimation using pulse transit time and heart rate, In 2014 12th international conference on signal processing (ICSP), pp. 115-118DOI
Wong M. Y. M., Poon C. C. Y., Zhang Y. T., 2009, An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects, Cardiovascular Engineering, Vol. 9, No. 1, pp. 32-38DOI
Chan K. W., Hung K., Zhang Y. T., 2001, October, Noninvasive and cuffless measurements of blood pressure for telemedicine, In 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 4, pp. 3592-3593DOI
Simjanoska M., Gjoreski M., Gams M., Madevska Bogdanova A., 2018, Non-invasive blood pressure estimation from ECG using machine learning techniques, Sensors, Vol. 18, No. 4DOI
Chowdhury M. H., Shuzan M. N. I., Chowdhury M. E., Mahbub Z. B., Uddin M. M., Khandakar A., Reaz M. B. I., 2020, Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques, Sensors, Vol. 20, No. 11, pp. 3127DOI
He R., Huang Z. P., Ji L. Y., Wu J. K., Li H., Zhang Z. Q., 2016, June, Beat-to-beat ambulatory blood pressure estimation based on random forest, In 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 194-198DOI
Graves A., Mohamed A. R., Hinton G., 2013 May, Speech recognition with deep recurrent neural networks, In 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6645-6649DOI
Pascanu R., Mikolov T., Bengio Y., 2013 May, On the difficulty of training recurrent neural networks, In International conference on machine learning, pp. 1310-1318DOI
Bradbury J., Merity S., Xiong C., Socher R., 2016, Quasi-recurrent neural networks, arXiv preprint arXiv:1611, Vol. 01576DOI
Medina J. R., Kalita J., 2018 December, Parallel attention mechanisms in neural machine translation, In 2018 17th IEEE international conference on machine learning and applications (ICMLA), pp. 547-552DOI
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Polosukhin I., 2017, Attention is all you need, Advances in neural information processing systems, Vol. 30DOI
Chorowski J. K., Bahdanau D., Serdyuk D., Cho K., Bengio Y., 2015, Attention-based models for speech recognition, Advances in neural information processing systems, Vol. 28DOI
Eom H., Lee D., Han S., Hariyani Y. S., Lim Y., Sohn I., Park C., 2020, End-to-end deep learning architecture for continuous blood pressure estimation using attention mechanism, Sensors, Vol. 20, No. 8, pp. 2338DOI