Mobile QR Code QR CODE

REFERENCES

1 
Novalia Agung W. A., 2018, The Impact of Interpersonal Communication toward Customer Satisfaction: The Case of Customer Service of Sari Asih Hospital., MATEC Web of Conferences,150, 05087DOI
2 
Cheong K.J., Kim J.J., So S.H., 2008, A study of strategic call center management:Relationship between key performance indicators and customer satisfaction., 6, Vol. 2, pp. 268-276URL
3 
Jane Lockwood. , 2017, An analysis of web-chat in an outsourced customer service account in the Philippines.DOI
4 
Bhavika R. Ranoliya , Nidhi Raghuwanshi , Sanjay Singh , 2017, Chatbot for university related FAQs., 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI)DOI
5 
Chung M., Ko E., Joung H., Kim S. J., 2018, Chatbot e-service and customer satisfaction regarding luxury brands., Journal of Business ResearchDOI
6 
Tetsuji Nakagawa , Kentaro Inui , Sadao Kurohashi , 2010, Dependency Tree-based Sentiment Classification using CRFs with Hidden Variables., In Proceedings of NIPS 2010URL
7 
Honglun Zhang , Liqiang Xiao , Yongkun Wang , Yaohui Jin , 2017, A Generalized Recurrent Neural Architecture for Text Classification with Multi-Task Learning., In Proceedings of the Twenty-Sixth International Joint Conference on Artificial IntelligenceDOI
8 
Baoyu Jing , Chenwei Lu , Deqing Wang , Fuzhen Zhuang , 2018, Cross-Domain Labeled LDA for Cross-Domain Text Classification., 2018 IEEE International Conference on Data Mining (ICDM)DOI
9 
Shang Gao , Arvind Ramanathan , Georgia Tourassi , 2018, Hierarchical Convolutional Attention Networks for Text Classification., In Proceedings of the Third Workshop on Representation Learning for NLP. Association for Computational Linguistics, pp. 11-23URL
10 
Jeremy Howard , Sebastian Ruder , 2018, Universal Language Model Fine-tuning for Text Classification., In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, pp. 328-339URL
11 
Jacob Devlin , Ming-Wei Chang , Kenton Lee , Kristina Toutanova , 2018, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding., arXiv preprint arXiv: 1810.04805URL
12 
Zhiguo Wang , Wael Hamza , Radu Florian , 2017, Bilateral Multi-Perspective Matching for Natural Language Sentences., arXiv:1702.03814URL
13 
Alec Radford , Karthik Narasimhan , Tim Salimans , Ilya Sutskever , 2018, Improving Language Understanding by Generative Pre-Training.URL
14 
Alexis Conneau , Douwe Kiela , Holger Schwenk , Lo¨ıc Barrault , Antoine Bordes , 2017, Supervised Learning of Universal Sentence Representations from Natural Language Inference Data., In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 670-680, Copenhagen, Denmark. Association for Computational LinguisticsURL
15 
Bryan McCann , James Bradbury , Caiming Xiong , Richard Socher , 2017, Learned in Translation: Contextualized Word Vectors., In NIPS. arXiv: 1708.00107URL
16 
Antonio Valerio Miceli Barone , Barry Haddow , Ulrich Germann and Rico Sennrich , 2017, Regularization techniques for fine-tuning in neural machine translation., In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1489-1494, Copenhagen, Denmark, September 7-11, 2017. Association for Computational LinguisticsURL
17 
Kanako Komiya , Hiroyuki Shinnou , 2018, Investigating Effective Parameters for Fine-tuning of Word Embeddings Using Only a Small Corpus., In Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP. Association for Computational Linguistics, pp. 60-67URL
18 
Jinhyuk Lee , Wonjin Yoon , Sungdon Kim , Donghyeon Kim , Sunkyu Kim , Chang Ho So , Jaewoo Kang , 2019, BioBERT: a pre-trained biomedical language representation model for biomedical text mining., arXiv:1901.08746URL
19 
Chen Z., Zhang H., Zhang X., Zhao L., 2018, Quora question pairs.URL