Mobile QR Code QR CODE


Balaji S., Karthikeyan S., A survey on moving object tracking using image processing, in 2017 11th international conference on intelligent systems and control (ISCO). 2017. IEEE.DOI
Liu S., Liu Z., 2017, Multi-channel CNN-based object detection for enhanced situation awareness, arXiv preprint arXiv:1712.00075DOI
Withey M., 2010., Infrared countermeasure flares, The Imaging Science Journal, Vol. 58, No. 5, pp. 295-299DOI
Chu H., et al., 2007, Object tracking algorithm based on camshift algorithm combinating with difference in frame, in 2007 IEEE International Conference on Automation and Logistics. IEEE.DOI
Xu T., Zhu X.-p., Zhang X.-f., 2011., Infrared imaging Maneuvering Reentry Vehicle counter target lost algorithm using Modified Gain Extended Kalman Filter, in 2011 International Conference on Electronics, Communications and Control (ICECC). IEEE.DOI
Thome S., Scherer-Negenborn N., Arens M., 2018, Comparing visual tracker fusion on thermal image sequences, in 2018 21st International Conference on Information Fusion (FUSION). IEEE.DOI
Farnebäck G., 2003, Two-frame motion estimation based on polynomial expansion, in Scandinavian conference on Image analysis. SpringerDOI
Sharmin N., Brad R., 2012., Optimal filter estimation for Lucas-Kanade optical flow, Sensors, Vol. 12, No. 9, pp. 12694-12709DOI
Salhi A., Jammoussi A.Y., 2012., Object tracking system using Camshift, Meanshift and Kalman filter, World Academy of Science Engineering and Technology, Vol. 64, pp. 674-679DOI
Swalaganata G., Affriyenni Y., 2018, Moving object tracking using hybrid method, in 2018 International Conference on Information and Communications Technology (ICOIACT). IEEE.URL
Pérez J.S., Meinhardt-Llopis E., Facciolo G., 2013, TV-L1 optical flow estimation, Image Processing On Line 2013, pp. 137-150DOI
Nguen N., Hoa T.V., Vi T.N., 2021., Implementing non-uniformity correction algorithm for infrared focal plane array based on MPSoC, National Association of Scientists, Vol. 1, No. 66, pp. 14-21URL
Zhang K., Song H., 2013, Real-time visual tracking via online weighted multiple instance learning, Pattern recognition, Vol. 46, No. 1, pp. 397-411DOI
Kalal Z., Mikolajczyk K., Matas J., 2012, Tracking-learning-detection, IEEE transactions on pattern analysis and machine intelligence, Vol. 34, No. 7, pp. 1409-1422DOI
Henriques J.F., et al. , 2014., High-speed tracking with kernelized correlation filters, IEEE transactions on pattern analysis and machine intelligence, Vol. 37, No. 3, pp. 583-596DOI
Varfolomieiev A., Lysenko O., 2016., An improved algorithm of median flow for visual object tracking and its implementation on ARM platform, Journal of Real-Time Image Processing, Vol. 11, No. 3, pp. 527-534DOI
Lukezic A., et al. , 2017, Discriminative correlation filter with channel and spatial reliability, in Proceedings of the IEEE conference on computer vision and pattern recognitionDOI
Danelljan M., et al. , 2014, Accurate scale estimation for robust visual tracking, in British Machine Vision Conference, Nottingham, September 1-5, 2014. Bmva Press.DOI
Grabner H., Grabner M., Bischof H., 2006, Real-time tracking via on-line boosting, in Bmvc. CiteseerDOI