Mobile QR Code QR CODE

REFERENCES

1 
Balaji S., Karthikeyan S., A survey on moving object tracking using image processing, in 2017 11th international conference on intelligent systems and control (ISCO). 2017. IEEE.DOI
2 
Liu S., Liu Z., 2017, Multi-channel CNN-based object detection for enhanced situation awareness, arXiv preprint arXiv:1712.00075DOI
3 
Withey M., 2010., Infrared countermeasure flares, The Imaging Science Journal, Vol. 58, No. 5, pp. 295-299DOI
4 
Chu H., et al., 2007, Object tracking algorithm based on camshift algorithm combinating with difference in frame, in 2007 IEEE International Conference on Automation and Logistics. IEEE.DOI
5 
Xu T., Zhu X.-p., Zhang X.-f., 2011., Infrared imaging Maneuvering Reentry Vehicle counter target lost algorithm using Modified Gain Extended Kalman Filter, in 2011 International Conference on Electronics, Communications and Control (ICECC). IEEE.DOI
6 
Thome S., Scherer-Negenborn N., Arens M., 2018, Comparing visual tracker fusion on thermal image sequences, in 2018 21st International Conference on Information Fusion (FUSION). IEEE.DOI
7 
Farnebäck G., 2003, Two-frame motion estimation based on polynomial expansion, in Scandinavian conference on Image analysis. SpringerDOI
8 
Sharmin N., Brad R., 2012., Optimal filter estimation for Lucas-Kanade optical flow, Sensors, Vol. 12, No. 9, pp. 12694-12709DOI
9 
Salhi A., Jammoussi A.Y., 2012., Object tracking system using Camshift, Meanshift and Kalman filter, World Academy of Science Engineering and Technology, Vol. 64, pp. 674-679DOI
10 
Swalaganata G., Affriyenni Y., 2018, Moving object tracking using hybrid method, in 2018 International Conference on Information and Communications Technology (ICOIACT). IEEE.URL
11 
Pérez J.S., Meinhardt-Llopis E., Facciolo G., 2013, TV-L1 optical flow estimation, Image Processing On Line 2013, pp. 137-150DOI
12 
Nguen N., Hoa T.V., Vi T.N., 2021., Implementing non-uniformity correction algorithm for infrared focal plane array based on MPSoC, National Association of Scientists, Vol. 1, No. 66, pp. 14-21URL
13 
Zhang K., Song H., 2013, Real-time visual tracking via online weighted multiple instance learning, Pattern recognition, Vol. 46, No. 1, pp. 397-411DOI
14 
Kalal Z., Mikolajczyk K., Matas J., 2012, Tracking-learning-detection, IEEE transactions on pattern analysis and machine intelligence, Vol. 34, No. 7, pp. 1409-1422DOI
15 
Henriques J.F., et al. , 2014., High-speed tracking with kernelized correlation filters, IEEE transactions on pattern analysis and machine intelligence, Vol. 37, No. 3, pp. 583-596DOI
16 
Varfolomieiev A., Lysenko O., 2016., An improved algorithm of median flow for visual object tracking and its implementation on ARM platform, Journal of Real-Time Image Processing, Vol. 11, No. 3, pp. 527-534DOI
17 
Lukezic A., et al. , 2017, Discriminative correlation filter with channel and spatial reliability, in Proceedings of the IEEE conference on computer vision and pattern recognitionDOI
18 
Danelljan M., et al. , 2014, Accurate scale estimation for robust visual tracking, in British Machine Vision Conference, Nottingham, September 1-5, 2014. Bmva Press.DOI
19 
Grabner H., Grabner M., Bischof H., 2006, Real-time tracking via on-line boosting, in Bmvc. CiteseerDOI