Mobile QR Code QR CODE

REFERENCES

1 
Ye W, Heidemann J, Estrin D, 2002, An Energy-Efficient MAC Protocol for Wireless Sensor Networks, Vol. 00, No. c, pp. 1567-1576URL
2 
Adu-manu KS, Adam N, Tapparello C, Ayatollahi H, 2018, Energy-Harvesting Wireless Sensor Networks (EH-WSNs): A Review, ACM, Vol. 14, No. 2DOI
3 
Yousif JH, Kazem HA, Alattar NN, A comparison study based on artificial neural network for assessing PV/T solar energy production, Case Stud Therm Eng, 2019;13January:100407DOI
4 
Tyagi GDSS , SMEER : Secure Multi-tier Energy Efficient Routing Protocol for Hierarchical Wireless Sensor Networks, Wirel Pers Commun 2018; (0123456789).DOI
5 
Kansal A, Hsu J, Zahedi S, Power management in energy harvesting sensor networks, ACM Trans Embed Comput Syst, 2007;6(4):32-esDOI
6 
Bergonzini C, Atienza D, Prediction and Management in Energy Harvested Wireless Sensor Nodes, Published online 2009:6-10.DOI
7 
Cammarano A, Petrioli C, Pro-Energy: A novel energy prediction model for solar and wind energy-harvesting wireless sensor networks, MASS 2012 - 9th IEEE Int Conf Mob Ad-Hoc Sens Syst. Published online 2012:75-83.DOI
8 
Muhammad , Qureshi HK, Saleem U, Saleem M, Pitsillides A, Lestas M, Harvested Energy Prediction Schemes for Wireless Sensor Networks: Performance Evaluation and Enhancements, Rodríguez Pérez M, ed. Wirel Commun Mob Comput, 2017;2017:6928325.DOI
9 
Dehwah AH, Elmetennani S, UD-WCMA: An energy estimation and forecast scheme for solar powered wireless sensor networks, J Netw Comput Appl, 2017;90(April 2016):17-25.DOI
10 
Yang D, Jirutitijaroen P, 2012, Hourly solar irradiance time series forecasting using cloud cover index, Sol Energy, Vol. 86, No. 12, pp. 3531-3543DOI
11 
Colak I, Yesilbudak M, Genc N, Multi-period prediction of solar radiation using ARMA and ARIMA models, Proc - 2015 IEEE 14th Int Conf Mach Learn Appl ICMLA 2015. Published online 2016:1045-1049.DOI
12 
Prema V, 2015, Development of statistical time series models for solar power prediction, Renew Energy, Vol. 83, pp. 100-109DOI
13 
Shadab A, Said S, 2019, Box-Jenkins multiplicative ARIMA modeling for prediction of solar radiation: a case study, Int J Energy Water Resour, Vol. 3, No. 4, pp. 305-318DOI
14 
Taylor SJ, 2018, Forecasting at Scale, Am Stat, Vol. 72, No. 1, pp. 37-45DOI
15 
Ensafi Y, Amin SH, Zhang G, 2022, Time-series forecasting of seasonal items sales using machine learning - A comparative analysis, Int J Inf Manag Data Insights, Vol. 2, No. 1, pp. 100058DOI
16 
Bashir T, Haoyong C, Tahir MF, 2022, Short term electricity load forecasting using hybrid prophet-LSTM model optimized by BPNN, Energy Reports, Vol. 8, pp. 1678-1686DOI
17 
Jana RK, Ghosh I, 2022, Taming energy and electronic waste generation in bitcoin mining: Insights from Facebook prophet and deep neural network, Technol Forecast Soc Change, Vol. 178, pp. 121584DOI
18 
Gupta R, Yadav AK, Jha S, 2022, Time Series Forecasting of Solar Power Generation Using Facebook Prophet and XG Boost, In: 2022 IEEE Delhi Section Conference (DELCON), pp. 1-5DOI
19 
Ge Y, Nan Y, 2019., A hybrid prediction model for solar radiation based on long short-term memory, empirical mode decomposition, and solar profiles for energy harvesting wireless sensor networks, Energies, Vol. 12, No. 24DOI
20 
Bhatt A, Ongsakul W, M. NM, Sliding window approach with first-order differencing for very short-term solar irradiance forecasting using deep learning models, Sustain Energy Technol Assessments, 2022;50:101864.DOI
21 
Faisal ANMF, Rahman A, Habib MTM, Siddique AH, Hasan M, Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of Bangladesh, Results Eng, 2022;13(January):100365.DOI
22 
Mohan S, Solanki AK, Taluja HK, Predicting the impact of the third wave of COVID-19 in India using hybrid statistical machine learning models: A time series forecasting and sentiment analysis approach, Comput Biol Med, 2022;144: 105354.DOI
23 
Sharadga H, Hajimirza S, Time series forecasting of solar power generation for large-scale photovoltaic plants, Renew Energy, 2020;150:797-807.DOI
24 
Bhowmik S, Jelfs B, Arjunan SP, Outlier removal in facial surface electromyography through Hampel filtering technique, 2017 IEEE Life Sci Conf LSC 2017, 2018;2018-Janua:258-261.DOI
25 
Sharma A, Machine learning based optimal renewable energy allocation in sustained wireless sensor networks, Wirel Networks, 2019;0123456789.DOI