Mobile QR Code QR CODE


H. Zheng, "A Survey on Single Image Deblurring," 2021 2nd International Conference on Computing and Data Science (CDS), 2021, pp. 448-452URL
M. El Helou and S. Süsstrunk, "Blind Universal Bayesian Image Denoising With Gaussian Noise Level Learning," IEEE Transactions on Image Processing, vol. 29, pp. 4885-4897, 2020URL
V. Maik, Dohee Cho, Jeongho Shin, and Joonki Paik, “Regularized Restoration Using Image Fusion for Digital Auto-Focusing,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 10, pp. 1360-1369, Oct. 2007URL
I. Ramirez and G. Sapiro, “Universal Regularizers for Robust Sparse Coding and Modeling,” IEEE Trans. Image Process., vol. 21, no. 9, pp. 3850-3864, Sep. 2012URL
Mittu George P, Vivek M, and J. Paik, “Imaging inverse problem using sparse representation with adaptive dictionary learning,” in 2015 IEEE International Advance Computing Conference (IACC), Banglore, India, Jun. 2015, pp. 1247-1251URL
W. Z. Shao, Q. Ge, L.-Q. Wang, Y.-Z. Lin, H. S. Deng, and H. B. Li, “Nonparametric Blind Super-Resolution Using Adaptive Heavy-Tailed Priors”, J. Math. Imaging Vis., vol. 61, no. 6, pp. 885-917, Jul. 2019.URL
E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing Sparsity by Reweighted ℓ 1 Minimization”, J. Fourier Anal. Appl., vol. 14, no. 5-6, pp. 877-905, Dec. 2008URL
M. Chen, H. Zhang, Q. Han, and C. C. Huang, “A convex nonlocal total variation regularization algorithm for multiplicative noise removal”, EURASIP J. Image Video Process., vol. 2019, no. 1, p. 28, Dec. 2019,URL
V. Maik, S. Yu, S. Ko, and J. Paik, “Color reproduction using intensity compensation function for dual camera systems,” in 2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Seoul, Oct. 2016, pp. 1-2,URL
A. P. Abhilasha, S. Vasudha, N. Reddy, V. Maik, and K. Karibassappa, “Point spread function estimation and deblurring using code V optical imaging,” in 2016 International Conference on Electronics, Information, and Communications (ICEIC), Danang, Vietnam, Jan. 2016, pp. 1-4,URL
K. N. Sreenivasulu, N. Reddy, V. Maik, and K. Karibassappa, “Classification of unsharp pixels using Gaussian scale mixture (GSM) model,” in 2016 International Conference on Electronics, Information, and Communications (ICEIC), Danang, Vietnam, Jan. 2016, pp. 1-5,URL
R. Raj, J. Selvakumar, and V. Maik, “An Efficient Method for Photoplethysmography Signal Compression using Modified Adaptive Fourier Decomposition,” in 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, Dec. 2018, pp. 87-90,URL
Yang, H., Zhang, Z. & Guan, Y. Rolling bilateral filter-based text image deblurring. Vis Comput 35, 1627-1640 (2019).DOI
W. Dong, G. Shi, Y. Ma, and X. Li, “Image Restoration via Simultaneous Sparse Coding: Where Structured Sparsity Meets Gaussian Scale Mixture,” Int. J. Comput. Vis., vol. 114, no. 2-3, pp. 217-232, Sep. 2015,URL
A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D Frames and Variational Image Deblurring,” IEEE Trans. Image Process., vol. 21, no. 4, pp. 1715-1728, Apr. 2012URL
Jonas Koko, Stéphanie Jehan-Besson, “An Augmented Lagrangian Method for TVg + L1-norm Minimization”, Journal of Mathematical Imaging and Vision, Springer Verlag, 2010, 38 (3), pp. 182-196.URL
X. Xu, J. Pan, Y.-J. Zhang, and M.-H. Yang, “Motion Blur Kernel Estimation via Deep Learning,” IEEE Trans. Image Process., vol. 27, no. 1, pp. 194-205, Jan. 2018, doi: 10.1109/TIP.2017.2753658.DOI
B. Zhao, W. Li, and W. Gong, “Deep Pyramid Generative Adversarial Network With Local and Nonlocal Similarity Features for Natural Motion Image Deblurring,” IEEE Access, vol. 7, pp. 185893-185907, 2019,URL
D.-Q. Chen, L. Z. Cheng, and F. Su, “A New TV-Stokes Model with Augmented Lagrangian Method for Image Denoising and Deconvolution”, J. Sci. Comput., vol. 51, no. 3, pp. 505-526, Jun. 2012,URL
J. Koko and S. Jehan-Besson, “An Augmented Lagrangian Method for TV g +L 1-norm Minimization,” J. Math. Imaging Vis., vol. 38, no. 3, pp. 182-196, Nov. 2010,URL
Yuan, Q., Li, J., Zhang, L., Wu, Z. & Liu, G. Blind motion deblurring with cycle generative adversarial networks. Vis Comput (019),URL
V. T. H. Tuyet, N. T. Binh, and N. C. Thanh, “Edge Detection in Low-Quality Medical Images Based on Augmented Lagrangian Method and B-Spline,” in 7th International Conference on the Development of Biomedical Engineering in Vietnam (BME7), vol. 69, V. Van Toi, T. Q. Le, H. T. Ngo, and T.-H. Nguyen, Eds. Singapore: Springer Singapore, 2020, pp. 455-460,URL
H. E. Fortunato and M. M. Oliveira, “Fast high-quality non-blind deconvolution using sparse adaptive priors,” Vis. Comput., vol. 30, no. 6-8, pp. 661-671, Jun. 2014,URL