Mobile QR Code QR CODE

REFERENCES

1 
H. H. Lwin, A. S. Khaing, and H. M. Tun, “Automatic door access system using face recognition,” International Journal of Scientific & Technology Research, Vol. 4, No. 6, pp. 294-299, 2015.URL
2 
A. H. Miry, “Face Recognition Based Principal Component Analysis And Wavelet Sub bands,” Journal of Engineering and Sustainable Development, Vol. 17, No. 5, pp. 238-248, 2013.URL
3 
A. H. Miry, “Real Time Face Recognition based matlab and Arduino microcontroller,” Journal of Al-Ma'moon College, No. 27, pp. 390-403, 2016.URL
4 
R. Kiran, M. Lohith, Yogesh E., A. S. Kumar, and J. Anitha, “Interfacing of MATLAB with Arduino for Face Recognition,” International Journal of Science, Engineering and Technology, pp. 2395-4752, 2017.URL
5 
V. S. Pamulapati, Y. S. Rohan, V. S. Kiran, S. Sandeep, and M. S. Rao, “Real-time Face Tracking using MATLAB and Arduino,” Iconic Research and Engineering Journal, Vol. 1, No. 8, pp. 59-62, 2018.URL
6 
P. Vignan, “Face Tracking using MATLAB and Arduino,” International journal of research in electronics and computer engineering (IJRECE), Vol. 7, No. 1, pp. 2473-2477, 2019.URL
7 
M. Mira, S. Hadi, A. R. Fachrudin, S. H. Susilo, and R. E. Perkasa, “Vehicle Safety System with Arduino-Based Face Detection Technique,” Innovative Education Journal, Vol. 3 No. 3, 2021.DOI
8 
B. Nethravathi, S. S. Sinchana, and B. C. Anil, “Advanced face recognition based door unlock system using arduino,” International Journal of Recent Technology and Engineering (IJRTE), Vol. 8, No. 3, 2019.DOI
9 
E. Ramkumar, T. Guna, S. M. Dharshan, and V. S. A. Ramanan, “Implementing Facial Recognition by Interfacing MATLAB Along with Arduino,” International Journal of Innovative Technology and Exploring Engineering (IJITEE), Vol. 10 No. 4, pp. 66-71, 2021.DOI
10 
T. A. Salih, M. T. Ghazal, and Z. G. Mohammed, “Development of a dynamic intelligent recognition system for a real-time tracking robot,” IAES International Journal of Robotics and Automation, Vol. 10, No. 3, pp. 161-169, 2021.DOI
11 
E. L.-de-Celis, Ó. G.-Olalla, M. Ga-Ordás, and E. A-Gutiérrez, “An evaluation of Cascade Object Detector and Support Vector Machine methods for People Detection using a RGB-Depth camera located in a zenithal position,” Actas de las XXXVI Jornadas de Automática, pp. 134-140, 2015.URL
12 
E. Corvee, and F. Bremond, “Haar like and LBP based features for face, head and people detection in video sequences”, International Workshop on Behaviour Analysis and Video Understanding (ICVS 2011), Sophia Antipolis, France. pp. 10. ffinria-00624360f, 2011.URL
13 
Sh. J. Shahbaz, A. A. D. Al-Zuky, and F. E. M. Al-Obaidi, “Evaluation of Object Detectors in Recognizing Crossroad Intersection Triangle Sign," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 29, No. 2, 2023.DOI
14 
P. Viola, and M. Jones, “Rapid object detection using a boosted cascade of simple features," Computer Vision and Pattern Recognition,” 2001. CVPR 2001.URL
15 
J. Matas, O. Chum, M. Urba, and T. Pajdla. “Robust wide baseline stereo from maximally stable extremal regions,” Image and Vision Computing,” Vol. 22, No. 10, pp. 761-767, 2004.DOI
16 
A. Gad, “Evaluating deep learning models: the confusion matrix, accuracy, precision, and recall ,” 2021.URL