Mobile QR Code QR CODE

REFERENCES

1 
Khan S, Tufail M, Khan M T, et al. A novel framework for multiple ground target detection, recognition and inspection in precision agriculture applications using a UAV. Unmanned Systems, vol. 10, no. 1, pp. 45-56, 2022.DOI
2 
Jo H J, Choi W. A survey of attacks on controller area networks and corresponding countermeasures. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 6123-6141, 10.1109/TITS. 2021.3078740DOI
3 
Marino. A, Sugimoto. M, Ouchi. K, Hajnsek. I, ``Validating a notch filter for detection of targets at sea with ALOS-PALSAR data: Tokyo Bay,'' IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 12, pp. 74907-74918, 2014, 10.1109/JSTARS.2013.2273393DOI
4 
Daihong J, Sai Z, Lei D & Yueming D. Multi-scale generative adversarial network for image super-resolution. Soft Computing, 2022, 26(8): 3631-3641. https://doi.org/10.5244/c.26.135DOI
5 
Krizhevsky. A, Sutskever. I, Hinton. GE, ``ImageNet classification with deep convolutional neural-networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems,'' Red Hook: Curran Associates Inc., pp. 1097-1105, 2012.DOI
6 
Liu P, Zhou Y, Peng D~& Wu D. Global-Attention-Based Neural Networks for Vision Language Intelligence. IEEE/CAA Journal of Automatica Sinica, 2021, 8(7): 1243-1252, 10.1109/JAS.2020.1003402DOI
7 
Wang. FS, Wang. J, Li. B, ``Deep attribute learning based traffic sign detection,'' Journal of Jilin University (Engineering and Technology Edition), vol. 48, no. 1, pp. 319-329, 2018, 10.13229/j.cnki.jdxbgxb20161120DOI
8 
Quartulli. M, Datcu. M, ``Stochastic geometrical modeling for built-up area understanding from a single SAR intensity image with meter resolution,'' IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 9, pp. 1996-2003, 2004, 10.1109/TGRS.2004.833391DOI
9 
Xu. XU, Fengli. Z, Guojun. W, Xiyou. F, Minmin. S, Zhikun. L, Xingdong. L, ``Building height retrieval from dual-aspect SAR images based on match of strong backscattering features,'' Remote Sensing Technology and Application, vol. 31, no. 1, pp. 149-156, 2016,URL
10 
Yu H, Cheng X, Chen C,Heidari, A. A., Liu, J., Cai, Z., & Chen, H. Apple leaf disease recognition method with improved residual network. Multimedia Tools and Applications, 2022, 81(6): 7759-7782. 10.1007/s11042-022-11915-2DOI
11 
Xu. C, Chen. Z, Hou. R, ``Deep learning classification method of Landsat 8 OLI images based on inaccurate prior knowledge,'' Journal of Computer Applications, vol. 40, no. 12, pp. 3550-3557, 2020,URL
12 
Sulla-Menashe. D., Gray. JM, Abercrombie. SP, Friedl. MA, ``Hierarchical mapping of annual global land cover 2001 to present: the MODIS Collection 6 Land Cover product,'' Remote Sensing of Environment, vol. 222, pp. 183-194, 2019,DOI
13 
Rodriguez-Galiano. VF, Ghimire. B, Rogan. J, Chica-Olmo. M, Rigol-Sanchez. JP, ``An assessment of the effectiveness of a random forest classifier for landcover classification,'' ISPRS Journal of Photogrammetry and Remote Sensing, vol. 67, pp. 93-104, 2012,DOI
14 
Zhang. C, Sargent. I, Pan. X, Li. H, Gardiner. A, Hare. J, Atkinson. PM, ``An object-based con-volutional neural Nntwork (OCNN) for urban land use classification,'' Remote Sensing of Environment, vol. 216, pp. 57-70, 2018, 10.1016/j.rse.2018.06.034DOI
15 
Homer. C, Dewitz. J, Yang. L, Jin. S, Danielson. P, Xian. G, Megown. K, ``Completion of the 2011 national land cover database for the conterminous united states-representing a decade of land cover change information,'' Photogrammetric Engineering and Remote Sensing, vol. 81, no. 5, pp. 345-354, 2015,DOI