Mobile QR Code QR CODE

REFERENCES

1 
Y.-H. Lim et al., ``Quantitative Gait Analysis and Cerebrospinal Fluid Tap Test for Idiopathic Normal-pressure Hydrocephalus,'' Sci Rep, vol. 9, no. 1, Art. no. 1, Nov. 2019.DOI
2 
C. Selge et al., ``Gait analysis in PSP and NPH: Dual-task conditions make the difference,'' Neurology, vol. 90, no. 12, pp. e1021-e1028, Mar. 2018.DOI
3 
D. Cabral et al., ``Frequency of Alzheimer’s Disease Pathology at Autopsy in Patients with Clinical Normal Pressure Hydrocephalus,'' Alzheimers Dement, vol. 7, no. 5, pp. 509-513, Sep. 2011.DOI
4 
W. Pirker and R. Katzenschlager, ``Gait disorders in adults and the elderly\,: A clinical guide,'' Wien Klin Wochenschr, vol. 129, no. 3-4, pp. 81-95, Feb. 2017.DOI
5 
J. Kwon, Y. Lee, and J. Lee, ``Comparative Study of Markerless Vision-Based Gait Analyses for Person Re-Identification,'' Sensors (Basel), vol. 21, no. 24, p. 8208, Dec. 2021.DOI
6 
D. Xue et al., ``Vision-Based Gait Analysis for Senior Care.'' arXiv, Dec. 01, 2018.DOI
7 
Y.-M. Tang et al., ``Diagnostic value of a vision-based intelligent gait analyzer in screening for gait abnormalities,'' Gait Posture, vol. 91, pp. 205-211, Jan. 2022.DOI
8 
C. Wang, J. Zhang, J. Pu, X. Yuan, and L. Wang, ``Chrono-Gait Image: A Novel Temporal Template for Gait Recognition,'' in Computer Vision - ECCV 2010, K. Daniilidis, P. Maragos, and N. Paragios, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 257-270.DOI
9 
L. Wang, T. Tan, H. Ning, and W. Hu, ``Silhouette analysis-based gait recognition for human identification,'' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 12, pp. 1505-1518, Feb. 2003.DOI
10 
C. Prakash, A. Mittal, R. Kumar, and N. Mittal, ``Identification of gait parameters from silhouette images,'' in 2015 Eighth International Conference on Contemporary Computing (IC3), Aug. 2015, pp. 190-195.DOI
11 
N. Karimi Hosseini and M. J. Nordin, ``Human Gait Recognition: A Silhouette Based Approach,'' Journal of Automation and Control Engineering, vol. 1, pp. 40-42, Mar. 2013.DOI
12 
P. Supraja, R. J. Tom, R. S. Tiwari, V. Vijayakumar, and Y. Liu, ``3D convolution neural network-based person identification using gait cycles,'' Evolving Systems, vol. 12, no. 4, pp. 1045-1056, Dec. 2021.DOI
13 
S. Yu, D. Tan, and T. Tan, ``A Framework for Evaluating the Effect of View Angle, Clothing and Carrying Condition on Gait Recognition,'' in 18th International Conference on Pattern Recognition (ICPR’06), Aug. 2006, pp. 441-444.DOI
14 
D. Reis, J. Kupec, J. Hong, and A. Daoudi, ``Real-Time Flying Object Detection with YOLOv8.'' arXiv, May 17, 2023.DOI
15 
N. Wojke, A. Bewley, and D. Paulus, ``Simple Online and Realtime Tracking with a Deep Association Metric.'' arXiv, Mar. 21, 2017.DOI
16 
Y. Pang, J. Xie, M. H. Khan, R. M. Anwer, F. S. Khan, and L. Shao, ``Mask-Guided Attention Network for Occluded Pedestrian Detection,'' in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South): IEEE, Oct. 2019, pp. 4966-4974.DOI
17 
S. Ren, K. He, R. Girshick, and J. Sun, ``Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.'' arXiv, Jan. 06, 2016.DOI
18 
C. Song, Y. Huang, W. Ouyang, and L. Wang, ``Mask-Guided Contrastive Attention Model for Person Re-identification,'' in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT: IEEE, Jun. 2018, pp. 1179-1188.DOI
19 
K. He, G. Gkioxari, P. Dollár, and R. Girshick, ``Mask R-CNN.'' arXiv, Jan. 24, 2018.DOI
20 
Y. Liu, B. Schiele, and Q. Sun, ``Adaptive Aggregation Networks for Class-Incremental Learning,'' in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2021, pp. 2544-2553.DOI
21 
S. Jenni and P. Favaro, ``Deep Bilevel Learning,'' in Computer Vision - ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., in Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018, pp. 632-648.DOI
22 
Zhu, Zheng, et al. ``Gait recognition in the wild: A benchmark.'' Proceedings of the IEEE/CVF international conference on computer vision. 2021.DOI
23 
Zheng, Jinkai, et al. ``Gait recognition in the wild with dense 3d representations and a benchmark.'' Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.DOI
24 
Ionescu, Catalin, et al. ``Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments.'' IEEE transactions on pattern analysis and machine intelligence 36.7 (2013): 1325-1339.DOI
25 
Kwolek, Bogdan, et al. ``Calibrated and synchronized multi-view video and motion capture dataset for evaluation of gait recognition.'' Multimedia Tools and Applications 78 (2019): 32437-32465.DOI
26 
Cotton, R. James, et al. ``Spatiotemporal Characterization of Gait from Monocular Videos with Transformers.'' (2021).DOI
27 
A. L. McDonough, M. Batavia, F. C. Chen, S. Kwon, and J. Ziai, ``The validity and reliability of the GAITRite system’s measurements: A preliminary evaluation,'' Arch Phys Med Rehabil, vol. 82, no. 3, pp. 419-425, Mar. 2001.DOI
28 
A. J. Nelson et al., ``The validity of the GaitRite and the Functional Ambulation Performance scoring system in the analysis of Parkinson gait,'' NeuroRehabilitation, vol. 17, no. 3, pp. 255-262, 2002.DOI
29 
B. Bilney, M. Morris, and K. Webster, ``Concurrent related validity of the GAITRite walkway system for quantification of the spatial and temporal parameters of gait,'' Gait Posture, vol. 17, no. 1, pp. 68-74, Feb. 2003.DOI
30 
D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, ``A Closer Look at Spatiotemporal Convolutions for Action Recognition,'' in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT: IEEE, Jun. 2018, pp. 6450-6459.DOI
31 
Fan, Chao, et al. ``OpenGait: Revisiting Gait Recognition Towards Better Practicality.'' Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.DOI
32 
I. J. Goodfellow et al., ``Generative Adversarial Networks.'' arXiv, Jun. 10, 2014.DOI
33 
D. P. Kingma and J. Ba, ``Adam: A Method for Stochastic Optimization.'' arXiv, Jan. 29, 2017.DOI