Mobile QR Code QR CODE

REFERENCES

1 
E. Kaufmann, ``Champion-Level Drone Racing using Deep Reinforcement Learning: Supplementary Data.'' Zenodo, 2023. doi: 10.5281/ZENODO.7955278.DOI
2 
A. Rejeb, K. Rejeb, S. J. Simske, and H. Treiblmaier, ``Drones for supply chain management and logistics: a review and research agenda,'' International Journal of Logistics Research and Applications, vol. 26, no. 6. Informa UK Limited, pp. 708-731, Sep. 24, 2021. doi: 10.1080/13675567.2021.1981273.DOI
3 
A. Sahebi-Fakhrabad, A. H. Sadeghi, E. Kemahlioglu-Ziya, R. Handfield, H. Tohidi, and I. Vasheghani-Farahani, ``The Impact of Opioid Prescribing Limits on Drug Usage in South Carolina: A Novel Geospatial and Time Series Data Analysis,'' Healthcare, vol. 11, no. 8. MDPI AG, p. 1132, Apr. 14, 2023. doi: 10.3390/healthcare11081132.DOI
4 
K. Flemons et al., ``The use of drones for the delivery of diagnostic test kits and medical supplies to remote First Nations communities during Covid-19,'' American Journal of Infection Control, vol. 50, no. 8. Elsevier BV, pp. 849-856, Aug. 2022. doi: 10.1016/j.ajic.2022.03.004.DOI
5 
F. Alobaid, N. Mertens, R. Starkloff, T. Lanz, C. Heinze, and B. Epple, ``Progress in dynamic simulation of thermal power plants,'' Progress in Energy and Combustion Science, vol. 59. Elsevier BV, pp. 79-162, Mar. 2017. doi: 10.1016/j.pecs.2016.11.001.DOI
6 
H. Eskandaripour and E. Boldsaikhan, ``Last-Mile Drone Delivery: Past, Present, and Future,'' Drones, vol. 7, no. 2. MDPI AG, p. 77, Jan. 21, 2023. doi: 10.3390/drones7020077.DOI
7 
Ahmed, T., Rahman, T., Roy, B. B., & Uddin, J. (2021). Drone Detection by Neural Network Using GLCM and SURF. Journal of Information Systems and Telecommunication, 9(33), 15-24.URL
8 
H. Arksey and L. O’Malley, ``Scoping studies: towards a methodological framework,'' International Journal of Social Research Methodology, vol. 8, no. 1. Informa UK Limited, pp. 19-32, Feb. 2005. doi: 10.1080/1364557032000119616.DOI
9 
K. Peng et al., ``A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone Parcel Delivery,'' IEEE Access, vol. 7. Institute of Electrical and Electronics Engineers (IEEE), pp. 49191-49200, 2019. doi: 10.1109/access.2019.2910134.DOI
10 
S. Singha and B. Aydin, ``Automated Drone Detection Using YOLOv4,'' Drones, vol. 5, no. 3. MDPI AG, p. 95, Sep. 11, 2021. doi: 10.3390/ drones5030095.DOI
11 
Rahman, S., Rony, J. H., Uddin, J., & Samad, M. A. (2023). Real-Time Obstacle Detection with YOLOv8 in a WSN Using UAV Aerial Photography. Journal of Imaging, 9(10), 216.URL
12 
R. Hamatapa and C. Vongchumyen, ``Image Processing for Drones Detection,'' 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST). IEEE, Jul. 2019. doi: 10.1109/iceast.2019.8802578.DOI
13 
C. Aker and S. Kalkan, ``Using deep networks for drone detection,'' 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, Aug. 2017. doi: 10.1109/avss.2017.8078539.DOI
14 
M. J. Shafiee, B. Chywl, F. Li, and A. Wong, ``Fast YOLO: A Fast You Only Look Once System for Real-time Embedded Object Detection in Video.'' arXiv, 2017. doi: 10.48550/ARXIV.1709.05943.DOI
15 
V. Magoulianitis, D. Ataloglou, A. Dimou, D. Zarpalas, and P. Daras, ``Does Deep Super-Resolution Enhance UAV Detection?,'' 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, Sep. 2019. doi: 10.1109/avss.2019.8909865.DOI
16 
C. Dong, C. C. Loy, and X. Tang, ``Accelerating the Super-Resolution Convolutional Neural Network,'' Computer Vision - ECCV 2016. Springer International Publishing, pp. 391-407, 2016. doi: 10.1007/978-3-319-46475-6_25.DOI
17 
``Correction: SN Computer Science,'' SN Computer Science, vol. 4, no. 6. Springer Science and Business Media LLC, Sep. 28, 2023. doi: 10.1007/s42979-023-02168-3.DOI
18 
A. Farjana, F. Tabassum Liza, M. Al Mamun, M. C. Das, and M. Maruf Hasan, ``SARS CovidAID: Automatic detection of SARS CoV-19 cases from CT scan images with pretrained transfer learning model (VGG19, RESNet50 and DenseNet169) architecture,'' 2023 International Conference on Smart Applications, Communications and Networking (SmartNets). IEEE, Jul. 25, 2023. doi: 10.1109/smartnets58706.2023.10216235.DOI
19 
D. Wu, Y. Ying, M. Zhou, J. Pan, and D. Cui, ``Improved ResNet-50 deep learning algorithm for identifying chicken gender,'' Computers and Electronics in Agriculture, vol. 205. Elsevier BV, p. 107622, Feb. 2023. doi: 10.1016/j.compag.2023.107622.DOI
20 
A. Dutta, S. Mitra, M. Basak, and T. Banerjee, ``A comprehensive review on batteries and supercapacitors: Development and challenges since their inception,'' Energy Storage, vol. 5, no. 1. Wiley, Apr. 06, 2022. doi: 10.1002/est2.339.DOI
21 
A. Mehmood, Y. Gulzar, Q. M. Ilyas, A. Jabbari, M. Ahmad, and S. Iqbal, ``SBXception: A Shallower and Broader Xception Architecture for Efficient Classification of Skin Lesions,'' Cancers, vol. 15, no. 14. MDPI AG, p. 3604, Jul. 13, 2023. doi: 10.3390/cancers15143604.DOI
22 
M. Bruegel, D. Nagel, M. Funk, P. Fuhrmann, J. Zander, and D. Teupser, ``Comparison of five automated hematology analyzers in a university hospital setting: Abbott Cell-Dyn Sapphire, Beckman Coulter DxH 800, Siemens Advia 2120i, Sysmex XE-5000, and Sysmex XN-2000,'' Clinical Chemistry and Laboratory Medicine (CCLM), vol. 53, no. 7. Walter de Gruyter GmbH, Jan. 01, 2015. doi: 10.1515/cclm-2014-0945.DOI