Mobile QR Code QR CODE

REFERENCES

1 
Shehzed, Ahsan, Ahmad Jalal, and Kibum Kim. "Multi-person tracking in smart surveillance system for crowd counting and normal/abnormal events detection." 2019 international conference on applied and engineering mathematics (ICAEM). IEEE, 2019.DOI
2 
Guo, Lie, et al. "Pedestrian tracking based on camshift with kalman prediction for autonomous vehicles." International Journal of Advanced Robotic Systems 13.3 (2016): 120.DOI
3 
Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.DOI
4 
Zhou, Xingyi, Dequan Wang, and Philipp Krähenbühl. "Objects as points." arXiv preprint arXiv:1904.07850(2019).URL
5 
Aharon, Nir, Roy Orfaig, and Ben-Zion Bobrovsky. "BoT-SORT: Robust associations multi-pedestrian tracking." arXiv preprint arXiv:2206.14651 (2022).URL
6 
Wang, Yu-Hsiang. "SMILEtrack: SiMIlarity LEarning for Multiple Object Tracking." arXiv preprint arXiv:2211.08824 (2022).URL
7 
Maggiolino, Gerard, et al. "Deep oc-sort: Multi-pedestrian tracking by adaptive re-identification." arXiv preprint arXiv:2302.11813 (2023).DOI
8 
Milan, Anton, et al. "MOT16: A benchmark for multi-object tracking." arXiv preprint arXiv: 1603.00831 (2016).URL
9 
Dendorfer, Patrick, et al. "Mot20: A benchmark for multi object tracking in crowded scenes." arXiv preprint arXiv:2003.09003 (2020).URL
10 
Woinoski, Timothy, Alon Harell, and Ivan V. Bajic. "Towards automated swimming analytics using deep neural networks." arXiv preprint arXiv:2001.04433 (2020).URL
11 
Woinoski, Timothy, and Ivan V. Bajić. "Swimmer stroke rate estimation from overhead race video." 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2021.DOI
12 
Zhang, Yifu, et al. "Fairmot: On the fairness of detection and re-identification in multiple object tracking." International Journal of Computer Vision 129 (2021): 3069-3087.DOI
13 
Zheng, Zhaohui, et al. "Distance-IoU loss: Faster and better learning for bounding box regression." Proceedings of the AAAI conference on artificial intelligence. Vol. 34. No. 07. 2020.DOI
14 
He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.DOI
15 
Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14. Springer International Publishing, 2016.DOI
16 
Yu, Fisher, et al. "Deep layer aggregation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.DOI
17 
Wojke, Nicolai, Alex Bewley, and Dietrich Paulus. "Simple online and realtime tracking with a deep association metric." 2017 IEEE international conference on image processing (ICIP). IEEE, 2017.DOI
18 
Bewley, Alex, et al. "Simple online and realtime tracking." 2016 IEEE international conference on image processing (ICIP). IEEE, 2016.DOI
19 
Sha, Long, et al. "Understanding and analyzing a large collection of archived swimming videos." IEEE Winter Conference on Applications of Computer Vision. IEEE, 2014.DOI
20 
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).DOI
21 
Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv: 1804.02767 (2018).URL