Mobile QR Code QR CODE

REFERENCES

1 
M. J. Marcelino et al., “The Use of Communication Technologies in Higher Education in Portugal: Best Practices and Future Trends” Springer International Publishing, 2016.URL
2 
A. Haldorai et al., “Evolution, challenges, and application of intelligent ICT education: An overview”, vol. 29, no. 3, pp. 562-571, Feb 2020.URL
3 
H. K. Omar et al., “Big data cloud-based recommendation system using NLP techniques with machine and deep learning”, vol. 21, no. 5, p. 1076, Oct 2023.URL
4 
S. R. K. K. Annam et al., “ICT for Identifying Safe Infrastructure to Prevent Accident Using the Application of AI”, Springer Nature Singapore, pp. 771-781, Nov 2022.URL
5 
Z. Ullah et al., “Applications of Artificial Intelligence and Machine Learning in Smart Cities”, vol. 154, pp. 313-323, Mar 2020, Elsevier {BV}.URL
6 
R. Cioffi et al., “Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions”, MDPI vol. 12, no. 2, p. 492, Jan 2020.URL
7 
J. Finlay et al., “An Introduction to Artificial Intelligence”, CRC Press, Oct 2020.URL
8 
M. Stamp et al., “Introduction to Machine Learning with Applications in Information Security”, CRC Press, 2022.URL
9 
B. Mahesh et al., “Machine Learning Algorithms - A Review”, IJSR vol. 9, no. 1, Jan 2020.URL
10 
N. Tyagi et al., “Demystifying the Role of Natural Language Processing NLP in Smart City Applications: Background, Motivation, Recent Advances, and Future Research Directions”, LLC vol. 130, no. 2, pp. 857-908, Mar 2023.URL
11 
N. Devi et al., “Design of an Intelligent Bean Cultivation Approach Using Computer Vision, IoT, and Spatio-Temporal Deep Learning Structures”, vol. 75, p. 102044, Jul 2023, Elsevier.URL
12 
A. Haleem et al., “Artificial Intelligence AI Applications for Marketing: A Literature-Based Study”, vol. 3, pp. 119-132, 2022, Elsevier.URL
13 
S. Bhaskaran et al., “Enhanced Personalized Recommendation System for Machine Learning Public Datasets: Generalized Modeling, Simulation, Significant Results, and Analysis”, LLC vol. 15, no. 3, pp. 1583-1595, Feb 2023.URL
14 
M. Soori et al., “Artificial Intelligence, Machine Learning and Deep Learning in Advanced Robotics: A Review”, vol. 3, pp. 54-70, 2023, Elsevier.URL
15 
G. Nguyen et al., “Machine Learning and Deep Learning Frameworks and Libraries for Large-Scale Data Mining: A Survey”, LLC vol. 52, no. 1, pp. 77-124, Jan 2019.URL
16 
M. M. Taye et al., “Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions”, MDPI vol. 12, no. 5, p. 91, Apr 2023, Jan 2019.URL
17 
S. M. Basha et al., “Survey on Evaluating the Performance of Machine Learning Algorithms: Past Contributions and Future Roadmap”, Elsevier, 2019, pp. 153-164.URL
18 
M. Xue et al., “Survey on Evaluating the Performance of Machine Learning Algorithms: Past Contributions and Future Roadmap”, IEEE Access, vol. 8, pp. 74720-74742, 2020.URL
19 
L. H. Nazer et al., “Bias in Artificial Intelligence Algorithms and Recommendations for Mitigation”, PLoS, vol. 2, no. 6, p. e0000278, Jun 2023.URL
20 
W. J. Murdoch et al., “Definitions, Methods, and Applications in Interpretable Machine Learning”, vol. 116, no. 44, pp. 22071-22080, Oct 2019.URL
21 
R. Mayer et al., “Scalable Deep Learning on Distributed Infrastructures: Challenges, Techniques and Tools”, ACM vol 53, issue 1, 2023.URL
22 
A. Blanchard et al., “The Ethics of Artificial Intelligence for Intelligence Analysis: A Review of the Key Challenges with Recommendations”, Digital Society, vol. 2, no. 1, Apr 2023.URL
23 
A. Bohr et al., “The Rise of Artificial Intelligence in Healthcare Applications”, Elsevier, 2020, pp. 25-60.URL
24 
D. S. W. Ting et al., “Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes”, JAMA, vol. 318, no. 22, p. 2211, Dec 2017.URL
25 
D. Ardila et al., “End-to-end Lung Cancer Screening with Three-dimensional Deep Learning on Low-dose Chest Computed Tomography”, LLC, vol. 25, no. 6, pp. 954-961, May 2019.URL
26 
D. S. Carrellet et al., “Challenges in Adapting Existing Clinical Natural Language Processing Systems to Multiple, Diverse Health Care Settings”, OUP, vol. 24, no. 5, pp. 986-991, Apr 2017.URL
27 
G. Coppersmith et al., “Natural Language Processing of Social Media as Screening for Suicide Risk”, SAGE, vol. 10, p. 117822261879286, Jan 2018.URL
28 
C. Rhee et al., “Compliance with the National-1 Quality Measure and Association with Sepsis Outcomes: A Multicenter Retrospective Cohort Study”, Ovid Tech, vol. 46, no. 10, pp. 1585-1591, Oct 2018.URL
29 
R. E. Burke et al., “Post–Acute Care Reform: Implications and Opportunities for Hospitalists”, Wiley, vol. 12, no. 1, pp. 46-51, Jan 2017.URL
30 
A. Kyodo et al., “Heart Failure with Preserved Ejection Fraction Phenogroup Classification Using Machine Learning”, Wiley, vol. 10, no. 3, pp. 2019-2030, Apr 2023.URL
31 
F. Farahnakian et al., “A Comprehensive Study of Clustering-Based Techniques for Detecting Abnormal Vessel Behavior”, MDPI, vol. 15, no. 6, p. 1477, Mar 2023.URL
32 
D. Bazazeh et al., “Comparative Study of Machine Learning Algorithms for Breast Cancer Detection and Diagnosis”, 5th ICEDSA, Dec 2016.URL
33 
A. K. Faieq et al., “Prediction of Heart Diseases Utilizing Support Vector Machine and Artificial Neural Network”, IAES, vol. 26, no. 1, pp. 374, Apr 2022.URL
34 
A. Raghu et al., “Deep Reinforcement Learning for Sepsis Treatment”, arXiv, 2017.URL
35 
X. Liu et al., “Discrepancy between Perceptions and Acceptance of Clinical Decision Support Systems: Implementation of Artificial Intelligence for Vancomycin Dosing”, BMC, vol. 23, no. 1, Aug 2023.URL
36 
V. De Simone et al., “An Overview on the Use of {AI}/{ML} in Manufacturing {MSMEs}: Solved Issues, Limits, and Challenges”, vol. 217, pp. 1820-1829, 2023, Elsevier.URL