Mobile QR Code QR CODE

REFERENCES

1 
S. Ren, et al., ``Faster r-cnn: Towards real-time object detection with region proposal networks,'' Advances in neural information processing systems 2015.DOI
2 
J. Redmon, et al., ``A. You only look once: Unified, real-time object detection,'' In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788, 2016.DOI
3 
P. Voigtlaender et al., "MOTS: Multi-Object Tracking and Segmentation," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 7934-7943. Article (CrossRef Link)URL
4 
F, Fahime et al., ``Probabilistic Kalman filter for moving object tracking,'' Signal Processing: Image Communication 82, 115751, 2020.DOI
5 
W. Liu, et al,. ``Ssd: Single shot multibox detector,'' In Proceedings of the Computer Vision-ECCV 2016, Proceedings, Part I 14. Springer, pp. 21-37, 2016.DOI
6 
M. Tan. et al., ``Efficientdet: Scalable and efficient object detection,'' In Proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10781-10790, 2020.DOI
7 
C. Li. et al., ``Yolov6 v3. 0: A full-scale reloading,'' arXiv preprint arXiv:2301.05586 2023.DOI
8 
C.Y. Wang. et al. ``YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,'' In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464-7475, 2023.DOI
9 
S. Xu. et al. ``PP-YOLOE: An evolved version of YOLO,'' arXiv preprint arXiv:2203.16250 2022.DOI
10 
N. Wojke. et al. ``Simple online and realtime tracking with a deep association metric,'' In Proceedings of the 2017 IEEE international conference on image processing (ICIP). IEEE, pp. 3645-3649, 2017.DOI
11 
X. Zhou. et al. ``Objects as points,'' arXiv preprint arXiv:1904.07850 2019.DOI
12 
Y.H. Wang. et al. ``SMILEtrack: SiMIlarity LEarning for Multiple Object Tracking,'' arXiv preprint arXiv:2211.08824 2022.DOI
13 
M. Sakurada. et al. ``Anomaly detection using autoencoders with nonlinear dimensionality reduction,'' In Proceedings of the Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, pp. 4-11, 2014.DOI
14 
V. Mahadevan. et al. Anomaly detection in crowded scenes. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition. IEEE, pp. 1975-1981, 2010.DOI
15 
A.B. Chan. et al. ``Modeling, clustering, and segmenting video with mixtures of dynamic textures,'' IEEE transactions on pattern analysis and machine intelligence, 30, pp. 909-926, 2008.DOI
16 
J. Sivic. et al. ``A. Video Google: Efficient visual search of videos,'' Toward category-level object recognition, pp. 127-144, 2006.DOI
17 
I. Laptev. et al. ``On space-time interest points,'' International journal of computer vision, 64, pp. 107-123, 2005.DOI
18 
J. Carreira. et al. ``action recognition? a new model and the kinetics dataset,'' In Proceedings of the proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299-6308, 2017.DOI
19 
P. Jiang. et al. ``A Review of Yolo algorithm developments,'' Procedia Computer Science, 199, pp. 1066-1073, 2022.DOI
20 
J. Redmon. et al. ``A. Yolov3: An incremental improvement,'' arXiv preprint arXiv:1804.02767 2018.DOI
21 
G. Jocher. et al. ``Ultralytics/yolov5: v3. 0,'' 2020.DOI
22 
C.Y. Wang. et al. ``YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,'' arXiv preprint arXiv:2207.02696 2022.DOI
23 
Possegger, H.; Mauthner, T.; Bischof, H. In defense of color-based model-free tracking. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 2113-2120.DOI
24 
J. Weijer. et al. ``Learning color names for real-world applications,'' IEEE Transactions on Image Processing, 18, pp. 1512-1523, 2009.DOI
25 
Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 2014.DOI
26 
O. Russakovsky. et al. ``Imagenet large scale visual recognition challenge,'' International journal of computer vision, 115, pp. 211-252, 2015.DOI
27 
D. Tran. et al. ``Learning spatiotemporal features with 3d convolutional networks,'' In Proceedings of the Proceedings of the IEEE international conference on computer vision, pp. 4489-4497, 2015.DOI
28 
A. Karpathy. et al. ``Large-scale video classification with convolutional neural networks,'' In Proceedings of the Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1725-1732, 2014.DOI
29 
Z. Cheng. et al. ``Pedestrian color naming via convolutional neural network,'' In Proceedings of the Computer Vision-ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, Revised Selected Papers, Part II 13. Springer, pp. 35-51, 2017.DOI