Mobile QR Code QR CODE

REFERENCES

1 
Karn, A. Artificial intelligence in computer vision. International Journal of Engineering Applied Sciences and Technology. 2021.DOI
2 
Lee, M.K. Compound computer vision workflow for efficient and automated immunohistochemical analysis of whole slide images. Journal of Clinical Pathology 2022.DOI
3 
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. nature 2015, 521, 436-444.DOI
4 
In\'{e}s, A. Biomedical image classification made easier thanks to transfer and semi-supervised learning. Computer methods and programs in biomedicine 2020, 198, 105782.DOI
5 
Liu, T.; Siegel, E.; Shen, D. Deep learning and medical image analysis for COVID-19 diagnosis and prediction. Annual review of biomedical engineering 2022, 24, 179-201.DOI
6 
Thevenot, J. A Survey on Computer Vision for Assistive Medical Diagnosis From Faces. IEEE Journal of Biomedical and Health Informatics 2018, 22, 1497-1511.DOI
7 
Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. cell 2018, 172, 1122-1131.DOI
8 
Khan, Z.A.; Beghdadi, A.; Cheikh, F.A.; Kaaniche, M.; Pelanis, E.; Palomar, R.; Fretland, \AA{}.A.; Edwin, B.; Elle, O.J. Towards a video quality assessment based framework for enhancement of laparoscopic videos. In Proceedings of the Medical Imaging 2020: Image Perception, Observer Performance, and Technology Assessment. SPIE, 2020, Vol. 11316, pp. 129-136.DOI
9 
Bah, S.M.; Ming, F. An improved face recognition algorithm and its application in attendance management system. Array 2020, 5, 100014.DOI
10 
Cut, itoi, A.C. Remote Patient Monitoring Systems, Wearable Internet of Medical Things Sensor Devices, and Deep Learning-based Computer Vision Algorithms in COVID-19 Screening, Detection, Diagnosis, and Treatment. American Journal of Medical Research 2022, 9, 129-144.DOI
11 
Xing, F.; Xie, Y.; Su, H.; Liu, F.; Yang, L. Deep learning in microscopy image analysis: A survey. IEEE transactions on neural networks and learning systems 2017, 29, 4550-4568.DOI
12 
Hanna, M.G.; Ahmed, I.; Nine, J.; Prajapati, S.; Pantanowitz, L. Augmented reality technology using Microsoft HoloLens in anatomic pathology. Archives of pathology & laboratory medicine 2018, 142, 638-644.DOI
13 
Godinez, W.J.; Hossain, I.; Lazic, S.E.; Davies, J.W.; Zhang, X. A multi-scale convolutional neural network for phenotyping high-content cellular images. Bioinformatics 2017, 33, 2010-2019.DOI
14 
Chan, M.; Est\`{e}ve, D.; Fourniols, J.Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artificial intelligence in medicine 2012, 56, 137-156.DOI
15 
Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist- level classification of skin cancer with deep neural networks. nature 2017, 542, 115-118.DOI
16 
Ogutu, H.; El Archi, Y.; D\'{e}nes D\'{a}vid, L. Current trends in sustainable organization management: A bibliometric analysis. Oeconomia Copernicana 2023, 14, 11-45.DOI
17 
Randolph, J. A guide to writing the dissertation literature review. Practical assessment, research, and evaluation 2009, 14, 13.DOI
18 
Afridi, T.H.; Alam, A.; Khan, M.N.; Khan, J.; Lee, Y.K. A multimodal memes classification: A survey and open research issues. In Proceedings of the Innovations in Smart Cities Applications Volume 4: The Proceedings of the 5th International Conference on Smart City Applications. Springer, 2021, pp. 1451-1466.DOI
19 
Bai, X. Virtual garden landscape planning based on FPGA and GIS platform. Microprocessors and Microsystems 2020, 79, 103314.DOI
20 
Saeedi, R.; Norgaard, S.; Gebremedhin, A.H. A closed-loop deep learning architecture for robust activity recognition using wearable sensors. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017, pp. 473-479.DOI
21 
Amin, H.; Darwish, A.; Hassanien, A.E.; Soliman, M. End-to-end deep learning model for corn leaf disease classification. IEEE Access 2022, 10, 31103-31115.DOI
22 
Kang, R.; Park, B.; Ouyang, Q.; Ren, N. Rapid identification of foodborne bacteria with hyperspectral microscopic imaging and artificial intelligence classification algorithms. Food Control 2021, 130, 108379.DOI
23 
Jung, H.; Lodhi, B.; Kang, J. An automatic nuclei segmentation method based on deep con- volutional neural networks for histopathology images. BMC Biomedical Engineering 2019, 1, 1-12.DOI
24 
Kim, H.; Cho, J.; Jung, Y.; Lee, S.; Jung, Y. Area-efficient vision-based feature tracker for autonomous hovering of unmanned aerial vehicle. Electronics 2020, 9, 1591.DOI
25 
Sinanog˘ lu, N. Fully Convolutional Bottleneck Siamese Networks for Change Detection in Satellite Images. 2022.DOI
26 
Lobe, B.; Morgan, D.; Hoffman, K.A. Qualitative data collection in an era of social distancing. International journal of qualitative methods 2020, 19, 1609406920937875.DOI
27 
Khan, Z.; Shubham, T.; Arya, R.K. Skin Cancer Detection Using Computer Vision. In Proceed- ings of the International Conference on Computational Techniques and Applications. Springer, 2021, pp. 3-11.DOI
28 
Gouda, W.; Sama, N.U.; Al-Waakid, G.; Humayun, M.; Jhanjhi, N.Z. Detection of skin cancer based on skin lesion images using deep learning. In Proceedings of the Healthcare. MDPI, 2022, Vol. 10, p. 1183.DOI
29 
Zheng, J.; Lin, D.; Gao, Z.; Wang, S.; He, M.; Fan, J. Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis. IEEE Access 2020, 8, 96946-96954.DOI
30 
Yoon, S.; Chandra, A.; Vahedi, G. Stripenn detects architectural stripes from chromatin confor- mation data using computer vision. Nature Communications 2022, 13, 1602.DOI
31 
Akbarian, S.; Cawston, T.; Moreno, L.; Patel, S.; Allen, V.; Dolatabadi, E. A computer vision approach to combat lyme disease. arXiv preprint arXiv:2009.11931 2020.DOI
32 
Ankireddy, S. Assistive diagnostic tool for brain tumor detection using computer vision. In Proceedings of the 2020 IEEE MIT Undergraduate Research Technology Conference (URTC). IEEE, 2020, pp. 1-4.DOI
33 
de Almeida, J.G.; Gudgin, E.; Besser, M.; Dunn, W.G.; Cooper, J.; Haferlach, T.; Vassiliou, G.S.; Gerstung, M. Computational analysis of peripheral blood smears detects disease-associated cytomorphologies. Nature Communications 2023, 14, 4378.DOI
34 
Eguida, M.; Rognan, D. A computer vision approach to align and compare protein cavities: application to fragment-based drug design. Journal of Medicinal Chemistry 2020, 63, 7127-7142.DOI
35 
Ting, H.W.; Chung, S.L.; Chen, C.F.; Chiu, H.Y.; Hsieh, Y.W. A drug identification model developed using deep learning technologies: experience of a medical center in Taiwan. BMC health services research 2020, 20, 1-9.DOI
36 
Verma, V.K.; Kansal, V.; Bhatnagar, P. Patient Identification using Facial Recognition. In Proceedings of the 2020 International Conference on Futuristic Technologies in Control Systems & Renewable Energy (ICFCR). IEEE, 2020, pp. 1-7.DOI
37 
Dong, Y.; Yang, G.; Yin, Y. Time Lab’s Approach to the Challenge on Computer Vision for Remote Physiological Measurement. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 2398-2403.DOI
38 
Rahman, M.M.; Cook, J.; Taebi, A. Non-contact heart vibration measurement using computer vision-based seismocardiography. Scientific Reports 2023, 13, 11787.DOI
39 
Morinan, G.; Dushin, Y.; Sarapata, G.; Rupprechter, S.; Peng, Y.; Girges, C.; Salazar, M.; Milabo, C.; Sibley, K.; Foltynie, T.; et al. Computer vision quantification of whole-body Parkinsonian bradykinesia using a large multi-site population. npj Parkinson’s Disease 2023, 9, 10.DOI
40 
\includegraphics[width=1\textwidth]{3.docx.tmp/word/media/image5.jpeg}Zainuddin, A.A.; Superamaniam, S.; Andrew, A.C.; Muraleedharan, R.; Rakshys, J.; Miriam, J.; Bostomi, M.A.S.M.; Rais, A.M.A.; Khalidin, Z.; Mansor, A.F.; et al. Patient monitoring system using computer vision for emotional recognition and vital signs detection. In Proceedings of the 2020 IEEE student conference on research and development (SCOReD). IEEE, 2020, pp. 22-27.DOI
41 
Zhang, M.; Cheng, X.; Copeland, D.; Desai, A.; Guan, M.Y.; Brat, G.A.; Yeung, S. Using computer vision to automate hand detection and tracking of surgeon movements in videos of open surgery. In Proceedings of the AMIA Annual symposium proceedings. American Medical Informatics Association, 2020, Vol. 2020, p. 1373.URL
42 
Handelman, A.; Keshet, Y.; Livny, E.; Barkan, R.; Nahum, Y.; Tepper, R. Evaluation of suturing performance in general surgery and ocular microsurgery by combining computer vision-based software and distributed fiber optic strain sensors: a proof-of-concept. International Journal of Computer Assisted Radiology and Surgery 2020, 15, 1359-1367.DOI
43 
Cartucho, J.; Tukra, S.; Li, Y.; S. Elson, D.; Giannarou, S. VisionBlender: a tool to efficiently generate computer vision datasets for robotic surgery. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2021, 9, 331-338.DOI
44 
Luongo, F.; Hakim, R.; Nguyen, J.H.; Anandkumar, A.; Hung, A.J. Deep learning-based computer vision to recognize and classify suturing gestures in robot-assisted surgery. Surgery 2021, 169, 1240-1244.DOI
45 
Bah\c{c}eci S¸ims¸ek, I˙.; S¸irolu, C. Analysis of surgical outcome after upper eyelid surgery by computer vision algorithm using face and facial landmark detection. Graefe’s Archive for Clinical and Experimental Ophthalmology 2021, 259, 3119-3125.DOI
46 
Mascagni, P.; Alapatt, D.; Laracca, G.G.; Guerriero, L.; Spota, A.; Fiorillo, C.; Vardazaryan, A.;Quero, G.; Alfieri, S.; Baldari, L.; et al. Multicentric validation of EndoDigest: a computer vision platform for video documentation of the critical view of safety in laparoscopic cholecystectomy. Surgical Endoscopy 2022, 36, 8379-8386.DOI