Mobile QR Code QR CODE

REFERENCES

1 
C. Guo, X. Zuo, S.Wang, S. Zou, Q. Sun, A. Deng, M. Gong, and L. Cheng, ``Action2motion: Conditioned generation of 3d human motions,'' in Proc. ACM Int’l Conf. Multimedia, 2020, pp. 2021-2029.DOI
2 
M. Petrovich, M. J. Black, and G. Varol, ``Action-conditioned 3d human motion synthesis with transformer vae,'' in Proc. IEEE Int. Conf. Comput. Vis., 2021, pp. 10 985-10 995.DOI
3 
G. Tevet, B. Gordon, A. Hertz, A. H. Bermano, and D. Cohen-Or, ``Motionclip: Exposing human motion generation to clip space,'' 2022, arXiv:2203.08063.DOI
4 
M. Petrovich, M. J. Black, and G. Varol, ``Temos: Generating diverse human motions from textual descriptions,'' 2022, arXiv:2204.14109.DOI
5 
L. Goetschalckx, A. Andonian, A. Oliva, and P. Isola, ``Ganalyze: Toward visual definitions of cognitive mage properties,'' in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 5744-5753.DOI
6 
Z. Chen and N. Chen, ``Children’s football action recognition based on lstm and a v-dbn,'' IEIE ransactions on Smart Processing & Computing, vol. 12, no. 4, pp. 312-322, 2023.DOI
7 
Y. Shi, ``Image recognition of skeletal action for online physical education class based on convolutional neural network,'' IEIE Transactions on Smart Processing & Computing, vol. 12, no. 1, pp. 55-63, 2023.DOI
8 
A. Jahanian, L. Chai, and P. Isola, ``On the" steerability" of generative adversarial networks,'' in Proc. Int. Conf. Learn. Represent., 2019.DOI
9 
Y. Shen and B. Zhou, ``Closed-form factorization of latent semantics in gans,'' in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2021, pp. 1532-1540.DOI
10 
J. Zhu, R. Feng, Y. Shen, D. Zhao, Z.-J. Zha, J. Zhou, and Q. Chen, ``Lowrank subspaces in gans,'' in Proc. Adv. Neural Inf. Process. Syst., 2021, pp. 16 648-16 658.DOI
11 
D. P. Kingma and M. Welling, ``Auto-encoding variational bayes,'' 2013, arXiv:1312.6114.DOI
12 
B. Dai, Z.Wang, and D.Wipf, ``The usual suspects? reassessing blame for vae posterior collapse,'' in International Conference on Machine Learning. PMLR, 2020, pp. 2313-2322.DOI
13 
Q. Lu, Z. Yipeng, M. Lu, and V. Roychowdhury, ``Action-conditioned on demand motion generation,'' in Proc. ACM Int’l Conf. Multimedia, 2022, pp. 2249-2257.DOI
14 
M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, ``Smpl: A skinned multi-person linear model,'' in ACM Transactions on Graphics, 2015, pp. 1-16.DOI
15 
Q. Sun, Y. Xiao, J. Zhang, S. Zhou, C.-S. Leung, and X. Su, ``A local correspondence-aware hybrid cnn-gcn model for single-image human body reconstruction,'' IEEE Transaction on Multimedia, 2022.DOI
16 
Y. Sun, L. Xu, Q. Bao, W. Liu, W. Gao, and Y. Fu, ``Learning monocular regression of 3d people in crowds via scene-aware blending and deocclusion,'' IEEE Transactions on Multimedia, 2023.DOI
17 
H. Zhang, Y. Meng, Y. Zhao, X. Qian, Y. Qiao, X. Yang, and Y. Zheng, ``3d human pose and shape reconstruction from videos via confidence-aware temporal feature aggregation,'' IEEE Transactions on Multimedia, 2022.DOI
18 
Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, ``On the continuity of rotation representations in neural networks,'' in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 5745-5753.DOI
19 
H. Tang and N. Sebe, ``Total generate: Cycle in cycle generative adversarial networks for generating human faces, hands, bodies, and natural scenes,'' IEEE Transactions on Multimedia, vol. 24, pp. 2963-2974, 2021.DOI
20 
L. Ma, K. Huang, D. Wei, Z.-Y. Ming, and H. Shen, ``Fda-gan: Flowbased dual attention gan for human pose transfer,'' IEEE Transactions on Multimedia, 2021.DOI
21 
X. Lin and M. R. Amer, ``Human motion modeling using dvgans,'' 2018, arXiv:1804.10652.DOI
22 
I. Habibie, D. Holden, J. Schwarz, J. Yearsley, and T. Komura, ``A recurrent variational autoencoder for human motion synthesis,'' in Proc. British Mach. Vis. Conf., 2017.DOI
23 
F. Ma, G. Xia, and Q. Liu, ``Spatial consistency constrained gan for human motion transfer,'' IEEE Trans. Circuits Syst. Video Technol., 2021.DOI
24 
S. Wen, W. Liu, Y. Yang, T. Huang, and Z. Zeng, ``Generating realistic videos from keyframes with concatenated gans,'' IEEE Trans. Circuits Syst. Video Technol., 2018.DOI
25 
N. Xie, Z. Miao, X.-P. Zhang, W. Xu, M. Li, and J. Wang, ``Sequential gesture learning for continuous labanotation generation based on the fusion of graph neural networks,'' IEEE Trans. Circuits Syst. Video Technol., 2021.DOI
26 
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, \L{}. Kaiser, and I. Polosukhin, ``Attention is all you need,'' Proc. Adv. Neural Inf. Process. Syst., 2017.DOI
27 
H.-Y. Lee, X. Yang, M.-Y. Liu, T.-C. Wang, Y.-D. Lu, M.-H. Yang, and J. Kautz, ``Dancing to music,'' Proc. Adv. Neural Inf. Process. Syst., 2019.DOI
28 
E. H\"{a}rk\"{o}nen, A. Hertzmann, J. Lehtinen, and S. Paris, ``Ganspace: Discovering interpretable gan controls,'' Proc. Adv. Neural Inf. Process. Syst., pp. 9841-9850, 2020.DOI
29 
Y. Wei, Y. Shi, X. Liu, Z. Ji, Y. Gao, Z. Wu, and W. Zuo, ``Orthogonal jacobian regularization for unsupervised disentanglement in image generation,'' in Proc. IEEE Int. Conf. Comput. Vis., 2021, pp. 6721-6730.DOI
30 
V. Abrol, P. Sharma, and A. Patra, ``Improving generative modelling in vaes using multimodal prior,'' IEEE Transactions on Multimedia, vol. 23, pp. 2153-2161, 2020.DOI
31 
Y. Shen, J. Gu, X. Tang, and B. Zhou, ``Interpreting the latent space of gans for semantic face editing,'' in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 9243-9252.DOI
32 
Z. Lin, M. Chen, and Y. Ma, ``The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices,'' 2010, arXiv:1009.5055.DOI
33 
A. Razavi, A. v. d. Oord, B. Poole, and O. Vinyals, ``Preventing posterior collapse with delta-vaes,'' 2019, arXiv:1901.03416.DOI
34 
S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio, ``Generating sentences from a continuous space,'' 2015, arXiv:1511.06349.DOI
35 
I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez, and A. Courville, ``Pixelvae: A latent variable model for natural images,'' 2016, arXiv:1611.05013.DOI
36 
Z. Yang, Z. Hu, R. Salakhutdinov, and T. Berg-Kirkpatrick, ``Improved variational autoencoders for text modeling using dilated convolutions,'' in International Conference on Machine Learning. PMLR, 2017, pp. 3881-3890.DOI
37 
J. He, D. Spokoyny, G. Neubig, and T. Berg-Kirkpatrick, ``Lagging inference networks and posterior collapse in variational autoencoders,'' 2019, arXiv:1901.05534.DOI
38 
Y. Kim, S.Wiseman, A. Miller, D. Sontag, and A. Rush, ``Semi-amortized variational autoencoders,'' in International Conference on Machine Learning. PMLR, 2018, pp. 2678-2687.DOI
39 
B. Li, J. He, G. Neubig, T. Berg-Kirkpatrick, and Y. Yang, ``A surprisingly effective fix for deep latent variable modeling of text,'' arXiv:1909.00868.DOI
40 
D. Liu and G. Liu, ``A transformer-based variational autoencoder for sentence generation,'' in Proc. Int. Cong. Neural Netw. (IJCNN). IEEE, 2019, pp. 1-7.DOI
41 
H. Fu, C. Li, X. Liu, J. Gao, A. Celikyilmaz, and L. Carin, ``Cyclical annealing schedule: A simple approach to mitigating kl vanishing,'' in Proc. Hum. Lang. Technol., Annu. Conf. North Amer. Chapter Assoc. Comput. Lingustics, 2019, pp. 240-250.DOI
42 
Y. Ji, F. Xu, Y. Yang, F. Shen, H. T. Shen, andW.-S. Zheng, ``A large-scale RGB-D database for arbitrary-view human action recognition,'' in Proc. ACM Int’l Conf. Multimedia, 2018, p. 1510-1518.DOI
43 
S. Zou, X. Zuo, Y. Qian, S. Wang, C. Xu, M. Gong, and L. Cheng, ``3d human shape reconstruction from a polarization image,'' in Proc. Eur. Conf. Comput. Vis., 2020, pp. 351-368.DOI
44 
S. Zou, X. Zuo, Y. Qian, S.Wang, C. Guo, C. Xu, M. Gong, and L. Cheng, ``Polarization human shape and pose dataset,'' arXiv:2004.14899.DOI
45 
Y. Burda, R. Grosse, and R. Salakhutdinov, ``Importance weighted autoencoders,'' 2015, arXiv:1509.00519.DOI