Mobile QR Code QR CODE

2024

Acceptance Ratio

21%

REFERENCES

1 
C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, et al., ``Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China,'' The Lancet, vol. 395, no. 10223, pp. 497-506, 2020.DOI
2 
L. Gattinoni, D. Chiumello, P. Caironi, M. Busana, F. Romitti, et al., ``Covid-19 pneumonia: Different respiratory treatments for different phenotypes,'' Intensive Care Medicine, vol. 46, no. 6, pp. 1099-1102, 2020.DOI
3 
J. Phua, L. Weng, L. Ling, M. Egi, C. M. Lim, et al., ``Asian critical care clinical trials group, intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations,'' The Lancet Respiratory Medicine, vol. 8, no. 5, pp. 506-517, 2020.DOI
4 
P. O. Gourinchas, ``Flattening the pandemic and recession curves,'' Mitigating the Covid Economic Crisis: Act Fast and Do Whatever, vol. 31, no. 2, pp. 57-62, 2020.DOI
5 
A. Sadeghi, M. Sadeghi, A. Sharifpour, M. Fakhar, Z. Zakariaei, M. Sadeghi, M. Rokni, A. Zakariaei, E. S. Banimostafavi, and F. Hajati, ``Potential diagnostic application of a novel deep learning-based approach for COVID-19,'' Scientific Reports, vol. 14, no. 1, pp. 1-19, 2024.DOI
6 
S. P. Adhikari, S. Meng, Y. J. Wu, Y. P. Mao, R. X. Ye, et al., ``Epidemiology, causes, clinical manifestation and diagnosis, prevention, and control of coronavirus disease during the early outbreak period: A scoping review,'' Infectious Diseases of Poverty, vol. 9, no. 1, pp. 1-12, 2020.DOI
7 
Z. Allam and D. S. Jones, ``On the coronavirus outbreak and the smart city network: Universal data sharing standards coupled with artificial intelligence to benefit urban health monitoring and management,'' Healthcare, vol. 8, no. 1, pp. 46-59, 2020.DOI
8 
D. N. Vinod and S. R. S Prabaharan, ``Data science and the role of artificial intelligence in achieving the fast diagnosis of Covid-19,'' Chaos, Solitons & Fractals, vol. 140, no. 1, 110182, 2020.DOI
9 
S. Y. Siddiqui, S. Abbas, M. A. Khan, I. Naseer, T. Masood, et al., ``Intelligent decision support system for Covid-19 empowered with deep learning,'' Computers, Materials & Continua, vol. 66, no. 2, pp. 1719-1732, 2021.DOI
10 
] U. Özkaya, S. Öztürk and M. Barstugan, ``Coronavirus classification using deep features fusion and ranking technique,'' Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach, Springer, Berlin, Germany, vol. 10, no. 2, pp. 281-295, 2020.DOI
11 
C. Lv, W. Guo, X. Yin, L. Liu, X. Huang, S. Li, and L. Zhang, ``Innovative applications of artificial intelligence during the COVID-19 pandemic,'' Infectious Medicine, vol. 3, no. 1, pp. 1-16, 2024.DOI
12 
R. Alaufi, M. Kalkatawi, and F. Abukhodair, ``Challenges of deep learning diagnosis for COVID-19 from chest imaging,'' Multimedia Tools and Applications, vol. 83, no. 5, pp. 14337-14361, 2024.DOI
13 
R. E. Hall, C. I. Jones, and P. J. Klenow, ``Trading off consumption and covid-19 deaths,'' National Bureau of Economic Research, vol. 4, no. 2, pp. 1-10, 2020.DOI
14 
A. S. Al-Waisy, S. Al-Fahdawi, M. A. Mohammed, K. H. Abdulkareem, S. A. Mostafa, M. S. Maashi, M. Arif, and B. Garcia-Zapirain, ``COVID-CheXNet: Hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images,'' Soft Computing, vol. 27, no. 5, pp. 2657-2672, 2023.DOI
15 
A. Basu, K. H. Sheikh, E. Cuevas, and R. Sarkar, ``COVID-19 detection from CT scans using a two-stage framework,'' Expert Systems with Applications, vol. 193, 116377, 2022.DOI
16 
H. Kibriya and R. Amin, ``A residual network-based framework for COVID-19 detection from CXR images,'' Neural Computing and Applications, vol. 35, no. 11, pp. 8505-8516, 2023.DOI
17 
F. Mercaldo, M. P. Belfiore, A. Reginelli, L. Brunese, and A. Santone, ``Coronavirus covid-19 detection by means of explainable deep learning,'' Scientific Reports, vol. 13, no. 1, 2023.DOI
18 
A. S. Al-Waisy, S. Al-Fahdawi, M. A. Mohammed, K. H. Abdulkareem, S. A. Mostafa, M. S. Maashi, M. Arif, and B. Garcia-Zapirain, ``COVID-CheXNet: Hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images,'' Soft Computing, vol. 27, no. 5, pp. 2657-2672, 2023.DOI
19 
H. Mzoughi, I. Njeh, M. B. Slima, and A. B. Hamida, ``Deep efficient-nets with transfer learning assisted detection of COVID-19 using chest X-ray radiology imaging,'' Multimedia Tools and Applications, pp. 1-23, 2023.DOI
20 
P. Sharma, R. Arya, R. Verma, and B. Verma, ``Conv-CapsNet: Capsule-based network for COVID-19 detection through X-ray scans,'' Multimedia Tools and Applications, pp. 1-25, 2023.DOI
21 
Z. Ullah, M. Usman, S. Latif, and J. Gwak, ``Densely attention mechanism based network for COVID-19 detection in chest X-rays,'' Scientific Reports, vol. 13, no. 1, 261, 2023.DOI
22 
A. Narula and N. K. Vaegae, ``Development of CNN-LSTM combinational architecture for COVID-19 detection,'' Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 3, pp. 2645-2656, 2023.DOI