Mobile QR Code QR CODE

2024

Acceptance Ratio

21%

REFERENCES

1 
A. Harvey and J. LaPlace, ``Origins, ethics, and privacy implications of publicly available face recognition image datasets,'' Megapixels, 2019.URL
2 
I. Ahmed, M. Ahmad, J. J. Rodrigues, G. Jeon, and S. Din, ``A deep learning-based social distance monitoring framework for COVID-19,'' Sustainable Cities and Society, 102571, 2020.DOI
3 
C. T. Nguyen, Y. M. Saputra, N. V. Huynh, N. Y. Nguyen, T. V. Khoa, B. M. Tuan, B.M., D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz, and S. Chatzinotas, ``Enabling and emerging technologies for social distancing: A comprehensive survey,'' arXiv preprint arXiv:2005.02816, 2020.DOI
4 
N. S. Punn, S. K. Sonbhadra, and S. Agarwal, ``Monitoring COVID-19 social distancing with person detection and tracking via fine-tuned YOLO v3 and Deepsort techniques,'' arXiv preprint arXiv:2005.01385, 2020.DOI
5 
C. A. Pouw, F. Toschi, F. van Schadewijk, and A. Corbetta, ``Monitoring physical distancing for crowd management: Real-time trajectory and group analysis,'' PloS one, vol. 15, no. 10, e0240963, 2020.DOI
6 
M. Robakowska, A. Tyranska-Fobke, J. Nowak, D. Slezak, P. Zuratynski, P. Robakowski, K. Nadolny, and J. R. Ładny, ``The use of drones during mass events,'' Disaster and Emergency Medicine Journal, vol. 2, no. 3, pp. 129-134, 2017.DOI
7 
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ``You only look once: Unified, real-time object detection,'' Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779-788, 2016.DOI
8 
A. J. Sathyamoorthy, U. Patel, Y. A. Savle, M. Paul, and D. Manocha, ``COVID-Robot: Monitoring social distancing constraints in crowded scenarios,'' arXiv preprint arXiv:2008.06585, 2020.DOI
9 
K. Simonyan and A. Zisserman, ``Very deep convolutional networks for large-scale image recognition,'' arXiv preprint arXiv:1409.1556, 2014.DOI
10 
D. Yang, E. Yurtsever, V. Renganathan, K. A. Redmill, and \"{U}. \"{O}zg\"{u}ner, ``A vision-based social distancing and critical density detection system for COVID-19,'' arXiv preprint arXiv:2007.03578, pp.24-25, 2020.DOI
11 
A. S. S. Rao and J. A. Vazquez, J. A, ``Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey when cities and towns are under quarantine,'' Infection Control & Hospital Epidemiology, vol. 41, no. 7, pp. 1-5, 2020.DOI
12 
L. Yan, H. T. Zhang, Y. Xiao, M. Wang, C. Sun, J. Liang, S. Li, M. Zhang, Y. Guo, Y. Xiao, and X. Tang, ``Prediction of criticality in patients with severe Covid-19 infection using three clinical features: A machine learning-based prognostic model with clinical data in Wuhan,'' MedRxiv, 2020.DOI
13 
L. Peng, W. Yang, D. Zhang, C. Zhuge, and L. Hong, ``Epidemic analysis of COVID-19 in China by dynamical modeling,'' arxiv Preprint Arxiv, 2020.DOI
14 
S. J. Fong, G. Li, N. Dey, R. G. Crespo, and E. Herrera-Viedma, ``Finding an accurate early forecasting model from small dataset: A case Of 2019-Ncov novel coronavirus outbreak,'' International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 1, pp. 132-140 2020.DOI
15 
M. A. Al-Qaness, A. A. Ewees, H. Fan, and M. A. El Aziz, ``Optimization method for forecasting confirmed cases of COVID-19 in China,'' Journal of Clinical Medicine, vol. 9, no. 3, 674, 2020.DOI
16 
Y. Li, M. Liang, X. Yin, X. Liu, M. Hao, Z. Hu, Z., Wang, Y. and Jin, L, ``COVID-19 epidemic outside China: 34 founders and exponential growth,'' Medrxiv, 2020.DOI
17 
M. B. Araujo and B. Naimi, ``Spread of SARS-CoV-2 coronavirus likely to be constrained by climate,'' Medrxiv, 2020.DOI
18 
S. Abbas, M. A. Khan, L. E. Falcon-Morales, A. Rehman, Y. Saeed, M. Zareei, A. Zeb, and E. M. Mohamed, ``Modeling, simulation and optimization of power plant energy sustainability for IoT enabled smart cities empowered with deep extreme learning machine,'' IEEE Access, vol. 8, pp. 39982-39997, 2020.DOI
19 
A. Rehman, A. Athar, M. A. Khan, S. Abbas, A. Fatima, and A. Saeed, ``Modelling, simulation, and optimization of diabetes type II prediction using deep extreme learning machine,'' Journal of Ambient Intelligence & Smart Environments, vol. 12, no. 2, pp. 125-138, 2020.DOI
20 
M. A. Khan, S. Abbas, K. M. Khan, M. A. Al Ghamdi, and A. Rehman, ``Intelligent forecasting model of COVID-19 novel coronavirus outbreak empowered with deep extreme learning machine,'' CMC-Computers, Materials & Continua, vol. 64, no. 3, pp. 1329-1342, 2020.DOI
21 
M. A. Khan, A. Rehman, K. M. Khan, M. A. Al Ghamdi, and S. H. Almotiri, ``Enhance intrusion detection in computer networks based on deep extreme learning machine,'' CMC-Computers, Materials & Continua, vol. 66, no. 1, pp. 467-480, 2020.DOI
22 
G. B. Huang, D. H. Wang, and Y. Lan, ``Extreme learning machines: a survey,'' International Journal of Machine Learning & Cybernetics, vol. 2, no. 2, pp. 107-122, 2011.DOI
23 
S. Degadwala, D. Vyas, H. Dave, and A. Mahajan, ``Visual Social distance alert system using computer vision & deep learning,'' Proc. of 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, pp. 1512-1516, 2020.DOI
24 
B. Qin, and D. Li, ``Identifying facemask-wearing condition using image super-resolution with classification network to prevent COVID-19,'' Sensors, vol. 20, no. 18, 5236, 2020.DOI
25 
J. Su, X. He, L. Qing, T. Niu, Y. Cheng, and Y. Peng, ``A novel social distancing analysis in urban public space: A new online spatio-temporal trajectory approach,'' Sustainable Cities and Society, vol. 68, 102765, 2021.DOI
26 
A. J. Sathyamoorthy, U. Patel, Y. A. Savle, M. Paul, and D. Manocha, ``COVIDrobot: monitoring social distancing constraints in crowded scenarios,'' arXiv preprint arXiv:2008.06585, 2020.DOI