Mobile QR Code QR CODE


Choi J., Elezi I., Lee H-J., Farabet C., Alvarez J. M., Oct. 2021, Active Learning for Deep Object Detection via Probabilistic Modeling, in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), pp. 10264-10273.URL
Ravindran R., et al. , Mar. 2021, Multi-Object Detection and Tracking, Based on DNN, for Autonomous Vehicles: A Review, in IEEE Sens. J., Vol. 21, No. 5, pp. 5668-5677DOI
Zhao X., et al. , May 2020, Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle Applications, in IEEE Sens. J., Vol. 20, No. 9, pp. 4901-4913DOI
Choi J., Chun D., Kim H., Lee H-J., Oct. 2019, Gaussian yolov3: An accurate and fast object detector using localization uncertainty for autonomous driving, in Proc. IEEE Int. Conf. Comput. Vis. (ICCV)URL
Womg A., Shafiee M. J., Li F., Chwyl B., May 2018, Tiny SSD: A Tiny Single-Shot Detection Deep Convolutional Neural Network for Real-Time Embedded Object Detection, in Proc. 15th Conf. on Comput. Robot Vision (CRV), pp. 95-101.DOI
Redmon J., Farhadi A., 2018., YOLOv3: An incremental improvement, arXiv preprint, arXiv:1804.02767DOI
Nguyen D. T., Nguyen T. N., Kim H., H.-J Lee. , 2019, A High-Throughput and Power-Efficient FPGA Implementation of YOLO CNN for Object Detection, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 27, No. 8, pp. 1861-1873DOI
Nguyen D. T., Hung N. H., Kim H., Lee H. J., 2020, An Approximate Memory Architecture for Energy Saving in Deep Learning Applications, IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 67, No. 5, pp. 1588-1601DOI
Nguyen D. T., Kim H., Lee H. J., Chang I. J., May. 2018, An approximate memory architecture for a reduction of refresh power consumption in deep learning applications, in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 1-5DOI
Kang D., Kang D., Kang J., Yoo S., Ha S., Mar. 2018, Joint optimization of speed, accuracy, and energy for embedded image recognition systems, in Proc. 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 715-720DOI
Sandler M., Howard A., Zhu M., Zhmoginov A., Chen L., Jun. 2018, MobileNetV2: Inverted Residuals and Linear Bottlenecks, in Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4510-4520URL
Nguyen X. T., Nguyen T. N., H.-J Lee , Kim H., Dec. 2020, An Accurate Weight Binarization Scheme for CNN Object Detectors with Two Scaling Factors, IEIE Transactions on Smart Processing & Computing, Vol. 9, No. 6, pp. 497-503DOI
Choi J., Chun D., Lee H-J., Kim H., Aug. 2020, Uncertainty-based Object Detector for Autonomous Driving Embedded Platforms, in Proc. IEEE Int. Conf. Artifici. Intell. Circuits Syst. (AICAS), pp. 16-20DOI
Zhang Y., Shen Y., Zhang J., Apr. 2019, An improved tiny-yolov3 pedestrian detection algorithm, Int. J. Light Electron Opt., Vol. 183, pp. 17-23DOI
Xiao D., et al. , Jul. 2019., A target detection model based on improved tiny-yolov3 under the environment of mining truck, IEEE Access, Vol. 7DOI
Zhao Q., et al. , Jan. 2019, M2Det: A single-shot object detector based on multi-level feature pyramid network, in Proc. AAAI Conf. Artif. Intell. (AAAI), pp. 9259-9266DOI
SEKONIX Corp. , Feb. 2020., SF332X-10X Family Preliminary Datasheet, [Online]. Available:
H. Zhang , et al. , Apr. 2018, mixup: Beyond empirical risk minimization, in Proc. Int. Conf. Learn. Represent. (ICLR), pp. 1-13Google Search
Takahashi R., Matsubara T., Uehara K., 2020, Data augmentation using random image cropping and patching for deep CNNs, IEEE Trans.Circuits Syst. Video Technol., Vol. 30, No. 9, pp. 2917-2931DOI
Krizhevsky A., Sutskever I., Hinton G. E., Dec. 2012, ImageNet classification with deep convolutional neural networks, in Proc. Adv. Neural Inf. Process. Syst., pp. 1097-1105Google Search
He K., Zhang X., Ren S., Sun J., Jun. 2016, Deep residual learning for image recognition, in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 770-778URL
Hemmati M., B-Abhari M., Niar S., 2019, Adaptive Vehicle Detection for Real-time Autonomous Driving System, in Proc. Des. Autom. And Test in Eur.Conf. & Exhib.DOI
Yu F., et al. , Jun. 2020, BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning, in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)URL
Geiger A., Lenz P., Urtasun R., Jun. 2012, Are we ready for autonomous driving? the kitti vision benchmark suite, in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 3354-3361DOI
NVIDIA Corp. , Dec. 17, 2018, NVIDIA Xavier DocumentationGoogle Search