Mobile QR Code QR CODE

REFERENCES

1 
Ajin V. W., Kumar L. D., 2016, May, Big data and clustering algorithms., In 2016 International Conference on Research Advances in Integrated Navigation Systems (RAINS) (pp. 1-5). IEEE.DOI
2 
Drineas P., Frieze A., Kannan R., et al., 2004, Clustering large graphs via the singular value decomposition[J], Mach Learn, Vol. 56, No. 1-3, pp. 9-33DOI
3 
Dean J., Ghemawat S., 2008, MapReduce: simplified data processing on large clusters[J], Commun ACM, Vol. 51, No. 1, pp. 107-113DOI
4 
Ekanayake J., Pallickara S., Fox G., 2008, Map reduce for data intensive scientific analyses [C], eScience, eScience’08. IEEE fourth international conference on. IEEE 2008, pp. 277-284DOI
5 
Vattani A., 2011, K-means requires exponentially many iterations even in the plane [J], Discret Comput Geom, Vol. 45, No. 4, pp. 596-616DOI
6 
Vernica R., Carey M. J., Li C., 2010, Efficient parallel set-similarity joins using mapreduce, in SIGMODDOI
7 
Kurasova O., Marcinkevicius V., Medvedev V., Rapecka A., Stefanovic P., 2014, November, Strategies for big data clustering, In 2014 IEEE 26th international conference on tools with artificial intelligence, pp. 740-747DOI
8 
Ludwig S. A., 2015, MapReduce-based fuzzy c-means clustering algorithm: implementation and scalability, International journal of machine learning and cybernetics, Vol. 6, No. 6, pp. 923-934DOI
9 
Lv Z., Hu Y., Zhong H., Wu J., Li B., Zhao H., 2010, October, Parallel k-means clustering of remote sensing images based on mapreduce, In International Conference on Web Information Systems and Mining (pp. 162-170). Springer, Berlin, Heidelberg.DOI
10 
Li H. G., Wu G. Q., Hu X. G., Zhang J., Li L., Wu X., 2011 January, K-means clustering with bagging and mapreduce, In 2011 44th Hawaii International Conference on System Sciences (pp. 1-8). IEEE.DOI
11 
Shahrivari S., Jalili S., 2016, Single-pass and linear-time k-means clustering based on MapReduce, Information Systems, Vol. 60, pp. 1-12DOI
12 
Zhang B., Hsu M., Dayal U., 1999, K-harmonic means-a data clustering algorithm, Hewlett-Packard Labs Technical Report HPL-1999-124, 55DOI
13 
Bagde U., Tripathi P., 2018 February, An analytic survey on mapreduce based k-means and its hybrid clustering algorithms, In 2018 second international conference on computing methodologies and communication (iccmc) (pp. 32-36). IEEE.DOI
14 
Guo C., Peng L., 2008 October, A hybrid clustering algorithm based on dimensional reduction and k-harmonic means, In 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (pp. 1-4). IEEE.DOI
15 
Ludwig S. A., 2015, MapReduce-based fuzzy c-means clustering algorithm: implementation and scalability, International journal of machine learning and cybernetics, Vol. 6, No. 6, pp. 923-934DOI
16 
Dai W., Yu C., Jiang Z., 2016, An improved hybrid Canopy-Fuzzy C-means clustering algorithm based on MapReduce model, Journal of Computing Science and Engineering, Vol. 10, No. 1, pp. 1-8DOI
17 
Kumar A., Ingle Y. S., Pande A., Dhule P., 2014, Canopy clustering: a review on pre-clustering approach to K-means clustering, Int. J. Innov. Adv. Comput. Sci.(IJIACS), Vol. 3, No. 5, pp. 22-29DOI
18 
Li X., Song J., Zhang F., Ouyang X., Khan S. U., 2016, MapReduce-based fast fuzzy c-means algorithm for large-scale underwater image segmentation, Future Generation Computer Systems, Vol. 65, pp. 90-101DOI
19 
Sun T., Shu C., Li F., Yu H., Ma L., Fang Y., 2009, December, An efficient hierarchical clustering method for large datasets with map-reduce, In 2009 International conference on parallel and distributed computing, applications and technologies (pp. 494-499). IEEE.DOI
20 
Gao H., Jiang J., She L., Fu Y., 2010, A new agglomerative hierarchical clustering algorithm implementation based on the map reduce framework, International Journal of Digital Content Technology and its Applications, Vol. 4, No. 3, pp. 95-100URL