Mobile QR Code QR CODE

REFERENCES

1 
He K., Sun J., Tang X., 2011, Single image haze removal algorithm using dark channel prior, 205 IEEE Trans. Pattern Anal. Mach. Intell., Vol. 33, pp. 2341-2353URL
2 
He K., Sun J., Tang X., 2015, A fast single image haze removal algorithm using color attenuation prior, IEEE Trans. Image Processing, Vol. 24, pp. 3522-3533URL
3 
Narasimhan S. G., Nayar S. K., 2002, Vision and the atmosphere, Int. J. Comput. Vis., Vol. 48, pp. 233-254URL
4 
Cai B., Xu X., Jia K., 2016, Dehazenet: An end-to-end system for single image haze removal, IEEE Trans. Image Process., Vol. 25, pp. 5187-5198URL
5 
Li B., Peng X., Wang Z., 2017, Aod-net: All-in-one dehazing network, IEEE Conf. Computer Vision, pp. 4780-4788URL
6 
Li B., Ren W., Fu D. D., 2019, Benchmarking single-image dehazing and beyond, IEEE Trans. Image Processing, Vol. 28, pp. 492-505URL
7 
Godard C., Aodha O. M., Brostow G. J., 2017, Unsupervised monocular depth estimation with left-right consistency, IEEE Conf. Computer Vision Pattern Recognition, pp. 6602-6611DOI
8 
Godard C., Aodha O. M., Brostow G. J., 2019, Digging into self-supervised monocular depth estimation, IEEE Conf. Computer Vision, pp. 3828-3838DOI
9 
Alhashim I., Wonka P., 2017, High quality monocular depth estimation via transfer learningURL
10 
Eigen D., Puhrsch C., Fergus R., 2014, Depth map prediction from a single image using a multi-scale deep network, Conf. Neural Inf. Process. Syst., pp. 2366-2374URL
11 
Ranftl R., Bochkovskiy A., Koltun V., 2021, Vision transformers for dense prediction, IEEE Conf. Computer Vision, pp. 12179-12188URL
12 
Kim S. E., Park T. H., Eom I. K., 2020, Fast single image dehazing using saturation based transmission map estimation, IEEE Trans. Image Processing, Vol. 29, pp. 1985-1998DOI
13 
Peng Y.-T., Lu F.-C. C. Z., Zheng Y., 2020, Image haze removal using airlight white correction, local light filter, and aerial perspective prior, IEEE Trans. Pattern Analysis Machine Intelligence., Vol. 30, pp. 1385-1395URL
14 
Silberman N., Hoiem D., Kohli P., 2012, Indoor segmentation and support inference from rgbd images, Eur. Conf. Computer Vision, pp. 746-760URL
15 
Geiger A., Lenz P., Urtasun R., 2012, Are we ready for autonomous driving? the kitti vision benchmark suite, IEEE Conf. Computer Vision Pattern Recognition, pp. 3354-3361URL
16 
Li Z., Tan P., Tan R. T., 2015, Simultaneous video defogging and stereo reconstruction, IEEE Conf. Computer Vision Pattern Recognition, pp. 4988-4997URL
17 
Huang G., Liu Z., Maaten L. V. D., 2017, Densely connected convolutional networks, IEEE Conf. Computer Vision Pattern Recognition, pp. 4700-4708URL
18 
Dosovitskiy A., Beyer L., Kolesnikov A., 2021, An image is worth 16x16 words: Transformers for image recognition at scale, ICLRURL
19 
Deng J., Dong W., Socher R., 2009, Imagenet: A large-scale hierarchical image database, IEEE Conf. Computer Vision Pattern Recognition, pp. 248-255URL
20 
Ronneberger O., Fischer P., Brox T., 2015, U-net: Convolutional networks for biomedical image segmentation, Proc. Med. Image Comput. Comput. Assisted Intervention 9351, pp. 234-241URL
21 
Zhang H., Patel V. M., 2018, Densely connected pyramid dehazing network, IEEE Conf. Computer Vision Pattern Recognition, pp. 3194-3203URL
22 
Shannon C. E., 1948, A mathematical theory of communication, Bell System Technical Journal, pp. 379-423URL
23 
Tsai D., Lee Y., Matsuyama E., 2008, Information entropy measure for evaluation of image quality, Journal of Digital Imaging, Vol. 21, pp. 338-347URL
24 
Qin X., Wang Z., Bai X. X. Y., 2020, FFA-net: Feature fusion attention network for single image dehazing, AAAI Conference on Artificial Intelligence, pp. 11908-11915URL
25 
Dong H., Pan J., Xiang L., 2020, Multi-scale boosted dehazing network with dense feature fusion, IEEE Conf. Computer Vision Pattern Recognition, pp. 2154-2161URL