Mobile QR Code QR CODE

REFERENCES

1 
J. Eriksson, L. Girod and B. Hull, etc. ``The Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring'', 6th International Conference on Mobile Systems, Application, and Services (MobiSys 2008), Breckenridge, USA, June, 2008, pp. 29-39.URL
2 
R. Bishop, ``A Survey of Intelligent Vehicle Application Worldwide'', IEEE Intelligent Vehicles Symposium (IV 2000), Dearborn, MI, USA, May 2000, pp. 25-30.DOI
3 
U.S. Department of Transportation, Traffic Safety Facts - Crash Stats, June 2015.URL
4 
Pothole (2002).URL
5 
Roadscanners. Roadscanners oy (1998).URL
6 
J. Budras, A synopsis on the current equipment used for measuring pavement smoothness.URL
7 
Texas DOT Pavement Management Information System (PMIS) Rater’s Manual. Retrieved from Texas State Department of Transporation:URL
8 
V. Douangphachanh and H. Oneyama, ``A Model For The Estimation Of Road Roughness Condition From Sensor Data Collected By Android Smartphones,'' Journal of Japan Society of Civil Engineers, Ser. D3 (Infrastructure Planning and Management), vol. 70, no. 5, 2014.URL
9 
V. Douangphachanh and H. Oneyama, ``Formulation of a simple model to estimate road surface roughness condition from Android smartphone sensors,'' 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014.URL
10 
Pavement Manual, Texas Department of Transportation. (online)URL
11 
E. Gadelmawla, M. Koura, T. Maksoud, I. Elewa, and H. Soliman, ``Roughness parameters,'' Journal of Materials Processing Technology, vol. 123, no. 1, pp. 133-145, 2002.URL
12 
L. Sun, ``Simulation of Pavement Roughness and IRI Based on Power Spectral Density'', Mathematics and Computers in Simulation, 2003, vol. 61, pp. 77-88.URL
13 
D. Xu, A. Mohamed, and R. Yong, etc. ``Development of a criterion for road surface roughness based on power spectral density function'', Journal of Terramechanics, 1992, vol. 29, pp. 477-486.DOI
14 
W. Staszewski, K. Giacomin, ``Application of the Wavelet based FRFs to the Analysis of Nonstationary Vehicle Data,'' Proceedings- SPIE the International Society for Optical Engineering, pp. 425-431, 1997URL
15 
K.R. Griffiths, ``An Improved Method for Simulation of Vehicle Vibration Using a Journey Database and Wavelet Analysis for the Pre-Distribution Testing of Packaging,'' Ph.D. Dissertation, Univ. of Bath, Bath, UK, 2012URL
16 
L. Wei, T. F. Fwa, and Z. Zhe, ``Wavelet Analysis and Interpretation of Road Roughness,'' Journal of Transportation Engineering, vol. 131, no. 2, pp. 120-130, 2005.DOI
17 
``Statistics and Machine Learning Toolbox,'' MATLAB. [Online].URL
18 
S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: from theory to algorithms. New York: Cambridge University Press, 2016.URL
19 
V. S. Cherkassky and F. Mulier, Learning from data: concepts, theory, and methods. Hoboken, NJ: IEEE Press, 2007.URL
20 
Multiclass Model for Support Vector Machines or Other Classifiers - MATLAB.URL
21 
Gordon, A., Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees. Biometrics, 40(3), p. 874.URL
22 
F. Rosenblatt, Principles of neurodynamics; perceptrons and the theory of brain mechanisms. Washington, D.C.: Spartan Books, 1962.URL
23 
Rumelhart, David E., Geoffrey E. Hinton, and R. J. Williams. "Learning Internal Representations by Error Propagation". David E. Rumelhart, James L. McClelland, and the PDP research group. (editors), Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1: Foundation. MIT Press, 1986.URL
24 
Fabian Pedregosa; Gaël Varoquaux; Alexandre Gramfort; Vincent Michel; Bertrand Thirion; Olivier Grisel; Mathieu Blondel; Peter Prettenhofer; Ron Weiss; Vincent Dubourg; Jake Vanderplas; Alexandre Passos; David Cournapeau; Matthieu Perrot; Édouard Duchesnay (2011). "Scikit-learn: Machine Learning in Python". Journal of Machine Learning Research. 12: 2825-2830.URL
25 
Ranyal, E., Sadhu, A., & Jain, K. (2022). Road condition monitoring using smart sensing and artificial intelligence: A review. Sensors, 22(8), 3044.URL
26 
Chhabra, R., & Singh, S. (2021). A survey on smart phone-based road condition detection systems. IEEE Access.URL
27 
Raslan, E., Alrahmawy, M. F., Mohammed, Y. A., & Tolba, A. S. (2022). IoT for measuring road network quality index. Neural Computing and Applications, 1-18.URL
28 
Dey, M. R., Satapathy, U., Bhanse, P., Mohanta, B. K., & Jena, D. (2019, October). MagTrack: detecting road surface condition using smartphone sensors and machine learning. In TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (pp. 2485-2489). IEEE.URL
29 
Lee, T., Chun, C., & Ryu, S. K. (2021). Detection of road-surface anomalies using a smartphone camera and accelerometer. Sensors, 21(2), 561.URL
30 
Martinez-Ríos, E. A., Bustamante-Bello, M. R., & Arce-Sáenz, L. A. (2022). A Review of Road Surface Anomaly Detection and Classification Systems Based on Vibration-Based Techniques. Applied Sciences, 12(19), 9413.URL
31 
Martinelli, A., Meocci, M., Dolfi, M., Branzi, V., Morosi, S., Argenti, F., ... & Consumi, T. (2022). Road surface anomaly assessment using low-cost accelerometers: a machine learning approach. Sensors, 22(10), 3788.URL
32 
Varona, B., Monteserin, A., & Teyseyre, A. (2020). A deep learning approach to automatic road surface monitoring and pothole detection. Personal and Ubiquitous Computing, 24(4), 519-534.URL
33 
Kumar, M., Srivastava, S., & Uddin, N. (2019). Forgery detection using multiple light sources for synthetic images. Australian Journal of Forensic Sciences, 51(3), 243-250.URL
34 
Alsharef, A., Aggarwal, K., Sonia, Kumar, M., & Mishra, A. (2022). Review of ML and AutoML solutions to forecast time-series data. Archives of Computational Methods in Engineering, 29(7), 5297-5311.URL
35 
Madhu, G., Govardhan, A., Ravi, V., Kautish, S., Srinivas, B. S., Chaudhary, T., & Kumar, M. (2022). DSCN-net: a deep Siamese capsule neural network model for automatic diagnosis of malaria parasites detection. Multimedia Tools and Applications, 81(23), 34105-34127.URL
36 
Rana, A., Vaidya, P., Kautish, S., Kumar, M., & Khaitan, S. An application for the earthquake spectral and source parameters and prediction using adaptive neuro fuzzy inference system and machine learning. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-16.URL
37 
Choudhary, C., Singh, I., & Kumar, M. (2023). SARWAS: Deep ensemble learning techniques for sentiment based recommendation system. Expert Systems with Applications, 216, 119420.URL
38 
Basavaraju, A., Du, J., Zhou, F., & Ji, J. (2019). A machine learning approach to road surface anomaly assessment using smartphone sensors. IEEE Sensors Journal, 20(5), 2635-2647.URL
39 
https://oaktrust.library.tamu.edu/handle/1969.1/174107URL