Mobile QR Code QR CODE

2024

Acceptance Ratio

21%

REFERENCES

1 
C. Wang, J. Jiang, Z. Zhong, and X. Liu, ``Spatial-frequency mutual learning for face super-resolution,'' Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, pp. 22356-22366, 2023.DOI
2 
C. Ma, Z. Jiang, Y. Rao, J. Lu, and J. Zhou, ``Deep face super-resolution with iterative collaboration between attentive recovery and landmark estimation,'' Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 5568-5577, 2020.DOI
3 
C. Chen, D. Gong, H. Wang, Z. Li, and K.-Y. K. Wong, ``Learning spatial attention for face super-resolution,'' IEEE Transactions on Image Processing, vol. 30, pp. 1219-1231, 2021.DOI
4 
Y. Yoon, H.-G. Jeon, D. Yoo, J.-Y. Lee, and I. S. Kweon, ``Learning a deep convolutional network for light-field image super-resolution,'' Proc. of IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, pp. 57-65, 2015.DOI
5 
C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, ``Photo-realistic single image super-resolution using a generative adversarial network,'' Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 105-114, 2017.DOI
6 
Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, ``Residual dense network for image super-resolution,'' Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 2472-2481, 2018.DOI
7 
D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros, ``Context encoders: feature learning by inpainting,'' Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 2536-2544, 2016.DOI
8 
Z. Wang, J. Chen, and S. C. H. Hoi, ``Deep learning for image super-resolution: A survey,'' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 10, pp. 3365-3387, 2021.DOI
9 
M. Kawulok, P. Benecki, S. Piechaczek, K. Hrynczenko, D. Kostrzewa, and J. Nalepa, ``Deep learning for multiple-image super-resolution,'' IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 6, pp. 1062-1066, 2020.DOI
10 
M. Shin, M. Kim, and D.-S. Kwon, ``Baseline CNN structure analysis for facial expression recognition,'' Proc. of 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, pp. 724-729, 2016.DOI
11 
X. Huang, P. Zhang, J. Song, Q. Huang, C. Huang, and D. Huang, ``DDFormer: Dual-domain and dual-aggregation transformer for multi-contrast MRI super-resolution,'' Proc. of IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkiye, pp. 3029-3036, 2023.DOI
12 
G. Gao, Z. Xu, J. Li, J. Yang, T. Zeng, and G.-J. Qi, ``CTCNet: A CNN-transformer cooperation network for face image super-resolution,'' IEEE Transactions on Image Processing, vol. 32, pp. 1978-1991, 2023.DOI
13 
Q. Bao, Y. Liu, B. Gang, W. Yang, and Q. Liao, ``SCTANet: A spatial attention-guided cnn-transformer aggregation network for deep face image super-resolution,'' IEEE Transactions on Multimedia, vol. 25, pp. 8554-8565, 2023.DOI
14 
J. Pan, H. Yu, Z. Gao, S. Wang, H. Zhang, and W. Wu, ``Iterative residual optimization network for limited-angle tomographic reconstruction,'' IEEE Transactions on Image Processing, vol. 33, pp. 910-925, 2024DOI
15 
Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu, ``Feedback network for image super-resolution,'' Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 3862-3871, 2019.DOI
16 
X. Wang, L. Xie, C. Dong, and Y. Shan, ``Real-ESRGAN: training real-world blind super-resolution with pure synthetic data,'' Proc. of IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, pp. 1905-1914, 2021.DOI
17 
Q. Bao, B. Gang, W. Yang, J. Zhou, and Q. Liao, ``Attention-driven graph neural network for deep face super-resolution,'' IEEE Transactions on Image Processing, vol. 31, pp. 6455-6470, 2022.DOI
18 
L. Wang, Y. Wang, X. Dong, Q. Xu, J. Yang, W. An, and Y. Guo, ``Unsupervised degradation representation learning for blind super-resolution,'' Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, pp. 10576-10585, 2021.DOI
19 
X. Wang, Y. Li, H. Zhang, and Y. Shan, ``Towards real-world blind face restoration with generative facial prior,'' Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, pp. 9164-9174, 2021.DOI
20 
S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao, ``Multi-stage progressive image restoration,'' Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, pp. 14816-14826, 2021.DOI
21 
P. Bian, Z. Zheng, D. Zhang, L. Chen, and M. Li, ``Single image super-resolution via global-context attention networks,'' Proc. of IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, pp. 1794-1798, 2021.DOI
22 
K. S. Charan, R. G. Rochan, T. N. Shashank, and C. Gururaj, ``Image super-resolution using convolutional neural network,'' Proc. of IEEE 2nd Mysore Sub Section International Conference (MysuruCon), Mysuru, India, pp. 1-7, 2022.DOI
23 
J. Kim, J. K. Lee, and K. M. Lee, ``Accurate image super-resolution using very deep convolutional networks,'' Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 1646-1654, 2016.DOI
24 
N. C. Rakotonirina and A. Rasoanaivo, ``ESRGAN+: Further improving enhanced super-resolution generative adversarial network,'' Proc. of ICASSP 2020 - IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, pp. 3637-3641, 2020.DOI
25 
B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, ``Enhanced deep residual networks for single image super-resolution,'' Proc. of IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, pp. 1132-1140, 2017.DOI
26 
T. Dai, J. Cai, Y. Zhang, S.-T. Xia, and L. Zhang, ``Second-order attention network for single image super-resolution,'' Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 11057-11066, 2019.DOI
27 
J. Kim, J. K. Lee, and K. M. Lee, ``Deeply-recursive convolutional network for image super-resolution,'' Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 1637-1645, 2016.DOI
28 
B. Zhao, R. Hu, X. Jia, and Y. Guo, ``Multi-scale residual fusion network for super-resolution reconstruction of single image,'' IEEE Access, vol. 8, pp. 155285-155295, 2020.DOI
29 
H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, and Z. Liu, ``Pre-trained image processing transformer,'' Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, pp. 12294-12305, 2021.DOI
30 
J. Liang, J. Cao, G. Sun, K. Zhang, L. van Gool, and R. Timofte, ``SwinIR: Image restoration using swin transformer,'' Proc. of IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, pp. 1833-1844, 2021.DOI
31 
Z. Hui, X. Wang, and X. Gao, ``Fast and accurate single image super-resolution via information distillation network,'' Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 723-731, 2018.DOI
32 
Y. Mei, Y. Fan, Y. Zhou, L. Huang, T. S. Huang, and H. Shi, ``Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining,'' Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 5689-5698, 2020.DOI
33 
Z. Wang, G. Gao, J. Li, Y. Yu, and H. Lu, ``Lightweight image super-resolution with multi-scale feature interaction network,'' Proc. of IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, pp. 1-6, 2021.DOI
34 
CelebA Dataset - Machine Learning Datasets, CelebA Dataset Papers with CodeCelebA Dataset.URL
35 
A. Razavi, A. van den Oord, and O. Vinyals, ``Generating diverse high-fidelity images with VQ-VAE-2,'' Proc. of the 33rd International Conference on Neural Information Processing Systems, pp. 14866-14876, 2019.DOI
36 
A. Lugmayr, M. Danelljan, L. V. Gool, and R. Timofte, ``SRFlow: Learning the super-resolution space with normalizing flow,'' Proc. of the European Conference on Computer Vision (ECCV). 2021.DOI
37 
Y. Zhang, et al., ``Rethinking super-resolution: efficient and effective image upsampling with CNNs,'' Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2023.URL
38 
J. Deng, J. Guo, N. Xue, and S. Zafeiriou, ``ArcFace: additive angular margin loss for deep face recognition,'' Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4690-4699, 2019.DOI